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Engineering Trustworthy Al systems

System evolution & continuous delivery
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Engineering Trustworthy Al systems requires

Developing Al models and algorithms that are not only accurate, but
also :

v Explainable,

v Fair,
v'Privacy-preserving,
v'Causal, and
v'Robust.



Autonomous Driving Systems are expected to change mobility
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* Improved road safety
* Increase Productivity
* Increased accessibility
* Reduce Costs?

* Reduce Congestion?




“By 2035, autonomous driving could create $300 billion to
$400 billion in revenue.”

Most survey respondents expect L4 use cases to emerge by 2024 or 2025.

@ North America @ Europe @ Asia-Pacific A Start-ups Incumbents

2023 24 26 26 27 28 29 30 3 32 Average

L4 agtonomous on-street o—he—o
parking

L4 autonomous parking ° +0
Passenger  in garages
cars

L4 highway pilot! —h 0o

L4/5 robotaxi (vehicle on
demand) in urban areas?

Driverless on highway,
hub to hub

Driverless on full journey,
on highway, and to desti- » ® e
nation outside of highway

Trucks

'Driver can use the time on highways for work or leisure activities using in-car or own solutions but needs to take over at highway exits.

2Driver can use the time on highways in urban environments for work or leisure activities using in-car or own solutions but may require some driver intervention.
3Robotaxis drive everywhere fully automated with no driver and accept and conduct transportation requests (goods, passengers). Passenger can use the travel
time for work or leisure activities.

Question: In your estimation, what is the rollout (ie, commercial availability of vehicles/service) timeline for autonomous driving across use cases in your region?
Source: 75 respondents (North America, n = 31; Europe, n = 33; Asia—Pacific, n = 11)

McKinsey
& Company
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What does the
human in the
driver’s seat
have to do?

What do these
features do?

Example
Features

SAE J3016™ LEVELS OF DRIVING AUTOMATION™

Learn more here: sae.org/standards/content/j3016_202104

Copyright © 2021 SAE Inlarnational. The summanry taixle may be (reely copied and ributed AS-IS provided that SAE Inlermaliggall deryiod ol e Ly et e e T

SAE
LEVEL 0"

SAE
LEVEL 1"

SAE
LEVEL 2"

SAE
LEVEL 3"

SAE
LEVEL 4"

You are not drising when these automated driving
features are e1gaged - even if you are seated in
“the driver's seat”

- even If your f
you are not steering

When the feature
requests,

These automated driving fe
will not require you to take

you must drive over driving

These are agtomated driving features

These features
are |limited

This feature
can drive the
vehicle under
all conditions

These features cai | drive the vehicle
under limited coditions and will
not operate unlzss all required
conditions are met

the driver

*lane centering *lane centering
OR AND chauffeur tax level 4,
but feature

» traffic jam *|ocal driverless *same as

blind spot
warning

*|ane departure
warning

»adaptive cruise
control

ptive cruise
control at t
same time

* pedals/
steering
wheel may or
may not be
installed

can drive
everywhere
in all
conditions

Al is leading the way
for the launch of Level
4/5 autonomous
vehicles



A Typical Autonomous Driving Car today!

Long Range Camera + Radar

+ 360 Vision System

-

Peripheral Vision System + Radar

|

Perimeter Vision System @ %

+
Perimeter Vision System

Peripheral Vision System
+ Radar
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Neural Networks
are at the core of
their perception
system!

car 0.78 ar 0.77 8-~ §.91 '
S "ﬁtat 0.7890 ir i |







a IVIuItlmodaI measurements under diverse settings (b Self-supervised neural network
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DepthNet '
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VisionNet
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FusionNet Motion
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RangeNet
Lgeo,
Lradar,
Lcam
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Multisensory perception

Camera (@ Lidar (&) Radar
-:c:):- Day @¢ Night % Sleet
db Rain & Fog ;‘é‘; Snow
‘é's e

https://www.nature.com/articles/s42256-022-00520-5



B Short-/Medium-Range Radar

=

Mapping.

Blind
spot
Detaction

Environment
Mapping
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The Apollo Autonomous Driving System

Traffic_Light_

Recognition Tra-] C'C [(_)ry
Prediction
bounding - liaht / \
Traffic_Light boxes Traffic Light | traffic light result 9
e Postprocess messege
Detection | P Vehicle_Cruise_Cutin
\/\ ¢
Traffic Light Scenarios Manager Vehicle_Cruise_Go
Lane_Detection B B
o Image {Lﬂi“e} polynomial curve lane - m Vehicle_Junction_Map
E— Preprogcess and lane type Lane Postprocess final lane result ' messege Prediction -
E messege 4
- | Container X X
DTSR \_/\ ' —> Vehicle_Junction MLP
Camera s Lane Line Cruise
amera . ;
) obstacle information Camera  le——————| Calibration Vehicle Lane Scanning
Camera_Obstacle_Detection Postprocess |
\/—\ precept obstacle Vehicle MLP
message
LiDAR_Obstacle Detection
Bicycle Vehicle RNN
{ LiDAR Velodyne 16 obstacle ] final object p
Point Clouds information LIDAR Fusion result )
Preprocess Postprocess Vehicle Lane Aggregate
LiDAR_Velodyne 64 - X
\/—\ Pedestrian
Pedestrian LSTM
DX T =7
oo & \ )
Radar Vehicle(truck or car)
Detection | —

Result

Inside of the Trunk
Industrial PC

Trunk Liner

GPS Receiver

https://dl.acm.org/doi/pdf/10.1145/3368089.3417063 15



Cameras

20-40 MP
per second

Radar

10-100 KB

per second Sonar
10-100 KB

per second

One autonomous vehicle GPS

4 000 GB | -50 KB

per second

per DAY each day

Lidar
10-70 MB
per second

A single autonomous car will produce more data in a year than the roughly 320 million monthly
users of Twitter create (Kastrenakes, 2019; Matthews, 2018)



https://www.theverge.com/2019/2/7/18213567/twitter-to-stop-sharing-mau-as-users-decline-q4-2018-earnings
https://bigdatashowcase.com/how-much-big-data-companies-make-on-internet/

Architecture of an Autonomous Driving system

Data Platform Remote Services
Cloud Service
/
| Localization Perception Planning Drive-by-Wire |
l Application .

‘ Runtime Framework (ROS2, Cyber RT,...)

Middleware
Operating System (Ubuniu, QNX RTOS,...)
0Ss
Computing Units Sensors Drive-by-Wire HW HMI HW
Hardware

https://channgo2203.github.io/av_software/ 17



Ensuring the safety and auditability of ML-based

components is challenging

Data Tests

Running
System

Unit Tests B Integration Sygter'n
Tests Monitoring

Traditional System Testing and Monitoring

Code ()

Eric Breck Shanging Cai Eric Nielsen Michael Salib D. Sculley Proceedings of IEEE Big Data (2017)

|
ML Infrastructure

Tests

Code =

Model
Tests

Model
Training

) Integration System

ML-Based System Testing and Monitoring

Data
| Monitoring

Prediction
Monitoring

Running
= System
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Ensuring the auditability of ML-based components is
challenging because...

. gur;ent state-of-the-art models are hard to interpret (i.e., black
OX

Input ——— . —— Output

19



Moreover, current popular explanation methods are unfortunately not
reliable!

Explanation From

Original Image Trained Network Untrained Network
R
L3
2 ‘ - *- ™ .

- %:‘* - .,?)

J: y * ' y

. e Wt

Test image Evidence for animal being a Siberian husky Evidence for animal being a transverse flute

Explanations using
attention maps

https://medium.com/@beenkim/beyond-interpretability-4bf03bbd9394

20



Why Don’t XAI Techniques Agree? Characterizing
the Disagreements Between Post-hoc Explanations

University of Saskatchewan, Canada

Foutse Khomh
Polytechnique Montréal, Canada
foutse.khomh@polymtl.ca

Neither can we fully trust current post-hoc XAl techniques

of Defect Predictions

Saumendu Roy Gabriel Laberge

Polytechnique Montréal, Canada
gabriel.laberge @polymtl.ca

Banani Roy
University of Saskatchewan, Canada
plz937 @usask.ca banani.roy @usask.ca
Saikat Mondal
ity of Saskatchewan, Canada
saikat.mondal @usask.ca

Amin Nikanjam

Polytechnique Montréal, Canada Univer

amin.nikanjam @polyml.ca

Local explanation for class Defect

0.50 < OWN_COMMIT <= 1.00

CountClassCoupled <= 1,00 -

RatioCommentToCode > 1.10

AvgLine <= 6.00

AvgCyclomatic <= 1.00 A

22.00 < Added_lines <= 95.00

0667 = OWN_COMMIT

/6 = Added_lines

0 = CountClassCoupled —

1 = AvgCyclomatic

4 = AvgLine

1.21 = RatioCommentToCode

-0.15 -0.10 -0.05 0.00 0.05 0.10 0.15

|
|
|
|

+0.03

|
-0.02 !
| +0

0.05 0.10
SHAP value

—0.05 0.00 0.15 0.20

They often disagree!

ICSME’22

Local explanation for class Defect

0.50 < OWN_COMMIT <= 1.00

Added_lines > 95.00 -

4.00 < CountClassCoupled <= 9.00 A

10.00 < AvgLine <= 15.00 -

0.34 < RatioCommentToCode <= 0.60 -

1.00 < AvgCyclomatic <= 2.00 -

320 = Added_lines

65 = CountClassCoupled

1 = OWN_COMMIT

0.37 = RatioCommentToCode
15 = AvglLine

2 = AvgCyclomatic

0.000

0.025

0.050 0.075 0100 0125 0.150

+0.17

|
|
R
|
+0.02
-0.01 I
I T
—0.05 0.00 0.05 0.10 0.15
SHAP value



Even worse, current post-hoc XAl techniques ...

FooL SHAP WITH STEALTHILY BIASED SAMPLING. ICLR’23

Gabriel Laberge', Ulrich Aivodji2, Satoshi Hara®, Mario Marchand*, Foutse Khomh'
'Polytechnique Montréal, Québec 2Ecole de technologie supérieure, Québec

30Osaka University, Japan *Universitié de Laval 2 Québec

{gak?riel . labelllfge, foutse.khomh}@polymtl.ca occupation - I Original
ulilﬁh.alvodjl@itsmtl.ia ' B Manipulated
sato ara@ar.sanlen.osa a-u.ac.jp education -
mario.marchand@ift.ulaval.ca
workclass
race -
capital_loss A
relationship

hours_per_week -

age

capital_gain 1

marital_status -

rgender .

—0.04 -0.02 0.00

Shap value

| ~0.10 —0.08 ~0.06

Ve e e e e o o S —

...can be manipulated easily!

22



ML models are vulnerable to carefully crafted perturbations (adversarial
robustness).

Stop Yield Speed Limit
(a) Normal (b) Attack

https://portswigger.net/daily-swig/trojannet-a-simple-yet-effective-attack-on-machine-learning-models 73



Moreover, they hardly generalize out-of-distribution.

24



How can we provide safety guarantees that are
required to reach Level 4/5?

Data
g Monitoring

Data Tests ¥

Model
Tests

ML Infrastructure Prediction
Tests | Monitoring
Model Running
Code = Training = System

. Integration System

Extensive testing!

https://pubs.rsna.org/doi/10.1148/rg.305105013



ML Development Phases

7\ VR /7 N\

Model ] Model ]

Implementation Evaluation
Training Tuning

NS

[Data postprocessing]

Model
Prediction

NS

27
[4]Han et al., What do Programmers Discuss about Deep Learning Frameworks



ML Development Phases

Preliminary
preparation

. . def initModel (self):
Environment Preparation el = TnEMEAET (]
if self.use_cuda:
. . . log.info("Using CUDA; {} devices.".format (torch.cuda.device_count()))
Resolve Frameworks/libraries versions Siene if torch.cuda.device_count () > 1:
multiple r model = nn.DataParallel (model) <—— Wraps the model

CPU, GPU management e dj ——

parameters to the GPU

28
[5] ELI STEVENS, LUCA ANTIGA, AND THOMAS VIEHMANN Deep Learning With Pytorch p286



Preliminary
preparation

ML Development Phases

Data
Collection

Load File from Disk Call REST API Using Data Collector Functionalities
Provided by DL Frameworks

[4]Han et al., What do Programmers Discuss about Deep Learning Frameworks

29



ML Development Phases

Data
Collection
Preliminary
preparation

{§}@

Data Preprocessmg

) Shape Labeled Data
- Size
- Format Training Validation -

- Data Type
yP 60 % 20 % 20%

[4]Han et al., What do Programmers Discuss about Deep Learning Frameworks



ML Development Phases

Da Model ]
Collection {6\}@ B Implementation

l Preliminary

preparation

(BN
AAMEvae

[ Data Preprocessing]

Ll

Choice of the architecture (Hyper)parameters Set Up Activation Function Loss Function Model Optimizers

31
[5] vikashraj luhaniwal., Analyzing different types of activation functions in neural networks — which one to prefer?



ML Development Phases

7~ N\

Model
Implementation

Training

[6] Feedforward

Input Layer Hidden Layer Output Layer

[6]Adarsh Menon., Neural Networks from Scratch in Python

32



ML Development Phases

7~ N\

Model
Implementation

Model
Evaluation

Training

NS

Loss
Training and validation cat accuracy wrai
— train
09 1.0 —— validation
P TYTLIITY
08 o0000® e 00,
®
0.8 1
07
08
o 0.6 1
05
0.4 . 0.4
03 \
#® Training cat acc “\A A I\
021 o —— Validation cat acc 021 ANV IAAAAMN AN
0 5 10 15 0 P £ 0 20 40 60 80 100

[4]Han et al., What do Programmers Discuss about Deep Learning Frameworks



ML Development Phases

7~ N\ 7~ N

Model
Evaluation

Model
Implementation

|

Training

U

[7]

Grid Search

1.00

o
o
=]

accuracy

0.85

f T T T T t
0.0 0.2 0.4 0.6 0.8 10
learning rate

[7] David Moran, Hyperparameters Optimization
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ML Development Phases

7~ N\ 7~ N

Model Model
Implementation Evaluation

Training

input

0.82

076 0.84

077 0.96

[4]Han et al., What do Programmers Discuss about Deep Learning Frameworks

[Data postprocessing}

35



ML Development Phases

7\ VR N\

Model Model
Implementation Evaluation

[Data postprocessing]

Model
Tuning

Training

Model
Prediction

QUTPUT

New data

Zv

N
Prediction

36
[4]Han et al., What do Programmers Discuss about Deep Learning Frameworks



Multi-dimensional space of ML faults

,.’?_ - :?' - -:ﬂi not enough learning
r | Fd i .
@ Aa----- Q":- _____ @ : capacity
,-ff : ,-rfl | _,.rf | |
. yi--®-r-----9 |
| ;:I-——;-—-:—:Q-——E--—:—:Q non-optimal
| & | I I I | . t-
N N . s | ’ regularization
S R R e
2 Ay, ' a0 I 7
o,@ Q@é ._.l__':_!.__:___a” .
O/b OO 8 @{9 = q | 1 ' | I

correct  incorrect feature  incorrect gradient
extraction computation

Implementation Issues

Model Issues

37



Finding bugs in ML programs is hard
Common sentiment among practitioners

* 80-90% of time is spent debugging and tuning.

* 10-20% is spent on figuring the mathematics and implementing the
code for training.

38



Why is finding bugs in ML programs hard?

Most ML bugs are invisible

Labels out of order!

features  glob.glob('path/to/features/*')

labels "glob.glob('path/to/labels/*")
train(features, labels)

Full Stack Deep Learning, UC Berkeley, 2021

.........................................................

w—training error

0 10 20 30 40 50

iterations

39



Why is finding bugs in ML programs hard?

loss

very high learning rate

low learning rate

high learning rate

good learning rate

Andrej Karpathy, CS231n course notes

095}
0.9
g oss
w
1
08H — iﬁ,Var[w,] =1 ours
0.75H ———— fi,Var[w,] =1 Xavier

Epoch

He, Kaiming et al. “Delving Deep into Rectifiers: Surpassing Human-Level
Performance on ImageNet Classification.” 2075 IEEE International
Conference on Computer Vision (ICCV) (2015): 1026-1034.

Models can be very sensitive to small differences in hyperparameters!

40



Example of Bugs and Design Issues in a CNN

@ is a bug:

o

Incompatibility between softmax as output activation
and binary_crossentropy as loss function

@ and ® are design issues:

o

o

(¢]

Decreasing filters count: 224 > 55 > 13
Decreasing filtering spatial size: (11, 11) > (5, 5) > (3, 3)
Both represent poor structural choices

Violating design patterns of effective and optimal CNN
architectures

Leading to bad performance
° Low accuracy
° Long training time

#train data

data1 = DataFetch('orange’, ...) Ke ra S

data1 = DataFetch(‘apple’, ...)

#one-hot encode outputs

y_train = np_utils.to_categorical(y_train)
#number of classes is 2: {orange, apple}
number_classes = y_train.shape[1]
#create the model

model = Sequential()

model.add(Conv2D(224] (11, 11), ...))

model.add(Dropout(0.2))

model.add(Conv2D(55] {5, 5], ...))

model.add(MaxPooling2D(pool_size(2, 2)))

model.add(Conv2D(13] 3, 3}, ..))

model.add(Dropout(0.5))

model.add(Dense(num_classes), activatioi)

# compile model

model.compiIe(Ioss=|'binaryicrossentropy'l. optimizer=SGD, ...)

41



Deep Learning Model Verification Using Graph
Transformations

TOSEM’21

AMIN NIKANJAM?, K. N. Toosi University of Technology, Iran and SWAT Lab., Polytechnique Montreal,
Canada

HOUSSEM BEN BRAIEK", SWAT Lab., Polytechnique Montreal, Canada

MOHAMMADMEHDI MOROVATI, SWAT Lab., Polytechnique Montreal, Canada

FOUTSE KHOMH, SWAT Lab., Polytechnique Montreal, Canada

Neuralint : Alinter for DL programs NeuraLint is fast and effective!

v i 0
v Capture defects early, so saves rework cost. It achieves an accuracy of 91.7 % .
v It correctly reported 18 additional bugs that were

v' Less expensive, because it doesn’t require
not found by developers.

execution.

v The average execution time of Neuralint for the
studied TensorFlow and Keras based programs are
v 2.892 and 3.197 seconds, respectively.

v" Find defects in seconds.

Try it out!




Neuralint has two pillars

A meta-model of DL programs Taxonomy of common DL faults

Taxonomy of Real Faults in
Deep Learning Systems

[ next
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Gunel Jahangirova, Nargiz Humbatova, Gabriele Bavota, Vincenzo Riccio, Andrea Stocco, and Paolo Tonella. 2019. Taxonomy of Real Faults in Deep
Learning Systems. arXiv preprint arXiv:1910.11015



Identification of Common DL Faults

Frameworks
4 | )
PYTHLRCH
A faultin a DL
Keras component?

¥ Tensor ‘
\§ J N ‘ Y Generic fault? | | “False positive”
—— VN —
Sources ‘ Yes No (DL fault)
‘\\\ “Generic?” | | Can be labelled?
% GitHub

Open Coding Yes/ NO
|_| stackoverflow

\ j Label the issue “unclear”

Artifact extraction



23 rules capturing common errors in DL programs (an excerpt)

e Reshaped Data Retention

— A reshape layer should preserve the number of data elements. We verify that the product of
original tensor dimensions equals to the product of reshaped tensor dimensions.

 Unnecessary Activation Removal

—> Multiple and redundant connected activations are not allowed. Since all activation functions are
designed to transform real values into a restricted interval, successive activations produce
erroneous outputs.

e Zero Gradients Reset

—>The gradients should be re-initialized after each training iteration. This clears old gradients from
the last step; otherwise accumulating the gradients hinders the optimization process. Some DL

libraries (e.g., Pytorch) delegates this necessary reset step to their users. s



Graph transformations for ‘Unnecessary Activation Removal’

HG, (LHS, RHS, NAC)

HG: Host graph

LHS: Precondition of the rule

RHS: postcondition of the rule

NAC: Negative Application Condition, i.e., the rule can be
applied only when NAC does not exist in the host graph

Application of the rule

(1) find a matching of LHS in HG,

(2) check NAC that forbid the presence of certain nodes and
edges,

(3) remove a part of HG that can be mapped to LHS but not to
RHS,

(4) a specific fault code is added to the node or edge in which
the violation occurred.

LHS

Layer

»

has

next™
I
v
Parameters P

Layer

has

next"

I
v
arameters

next™
|
has
v
Parameters

Layer

type = ‘convld’ or ‘conv2d’ next” | type = ‘activator’ | next” next” type = ‘activator’
or ‘conv3d’ or ‘dense’ nonlinear = true nonlinear = true
NAC
Layer Layer
I I
has has
v 4
Parameters Parameters
type = ‘convld’ or ‘conv2d’ type = ‘convid’ or ‘conv2d’
or ‘conv3d’ or ‘dense’ or ‘conv3d’ or ‘dense’
RHS
Layer next™ > layer next” » Layer
has has\ has has
Parameters Parameters Parameters
, — ) Faults . o o
type = ‘convld’ or ‘conv2d type = ‘activator’ type = ‘activator’
) . B Code = f002 ; .
or ‘conv3d’ or ‘dense nonLinear = true nonlLinear = true

Graph transformations are very efficient for finding violations of some conditions in a graph
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Neuralint: Execution Flow

Potential issues

Rules

o has-a A€tV
¢
Noo1 [—szsome o
st ™| s = nocons
el
roReqie
=3 No=2
ez
P
s =
oo
rogram B (==
i s nomnital No=3
————— o ==L e, —
' No=4 b
itz =
e vasa
e o
7 has-a- hasa has-a |_zeros.
VBT | 55-a—]  noconstn
Lo nolnitial
ot
b No<$ e
-

Model Extraction

Original program List of detected Issues
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Neuralint: Model-based verification of DL programs

Algorithm 1: NeuraLint: Model-based verification of DL programs using graph transfor-
mations

Input: A DL program, program, and rules as a graph grammar
Output: List of bugs or warnings to improve the program
graph < extractGraphFromProgram(program)

final <« graphChecker(graph, rules) :

(1) starting by graph, apply enables rules.

(2) apply enabled rules recursively.

(3) terminate when further application of rules becomes impossible.
(4) return final.

report < extractReportFromGraph(final)
return report
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Evaluation of Neuralint

Keras

¥ Tensor

18 Real-world DL programs
with reported bugs

No. SO # Symptom Recommended Fix NeuralLint: vi-
olated rules
1 33969059 | Bad Performance | Change the number of units for the out- | Rules 9, 13
put layer
2 34311586 | Bad Performance Remove the last layer activation Rules 9, 13, 19
3 38584268 | Program Crash Adding a flatten layer Rules 1, 19, 21
4 44184091 | Program Crash Fix the limit size for input sequence data | Rules 19
5 44322611 | Bad Performance | Prune the DNN, use RMSprop instead | Rules 13, 20,
SGD 21
6 45120429 | Program crash Change the number of units for the out- | Rules 1, 13, 19
put layer, Adding a flatten layer
7 45378493 | Incorrect Function- | Use a sigmoid for last layer activation Rules 9, 11, 13,
ality 19, 20
8 45711636 | Program Crash Use channels_last format for input data | Rule 2
9 49117607 | Program Crash Reduce spatial size of both Conv. filtering | Rules 2,11

and pooling widows

v In total, 22 out of 24 bugs are detected correctly by NeuralLint (91.7 %). Moreover, Neuralint correctly
reported 18 additional bugs that were not found by developers.

v" The average execution time of Neuralint for the studied TensorFlow and Keras based programs are 2.892 and

3.197 seconds respectively, it is therefore quite efficient!
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Testing Neural Networks Training Programs

HOUSSEM BEN BRAIEK, SWAT Lab., Polytechnique Montreal, Canada
FOUTSE KHOMH, SWAT Lab., Polytechnique Montréal, Canada

TheDeepChecker : Dynamic testing of DL programs
v" Capture defects during the training process.
v' Less expensive than testing the resulting model.

v Some overhead on the training process.

Try it out!

TOSEM’22

TheDeepChecker outperforms AWS SMD @
v DL coding bugs and misconfigurations are detected
with (precision, recall), respectively, equal to (90%,

96.4%) and (77%, 83.3%).

v" Finds 30% more defects than AWS SageMaker.
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TheDeepChecker verification rules

Parameters-related Issues , Untrained Parameters
Poor Weight Initialization

Parameters’ Values Divergence

Parameters Unstable Learning

Optimization-related Issues Unable to fit a small sample

Zero Loss
Diverging Loss
Slow or Non decreasing Loss
Loss Fluctuations

Unstable Gradient: Exploding

Unstable Gradient: Vanishing




TheDeepChecker verification rules

Given a layer i and N iterations

0 _ 1l 10 _ 31
vl _ 2 nl _ 32

Given a layer i and an iteration j

177 1Jt1y ] J+1




TheDeepChecker verification rules

Given a layer i

Given a layer i

n Routine




TheDeepChecker verification rules

Optimization-related Issues

Unable to fit a small sample

Zero Loss
Diverging Loss

Slow or Non decreasing Loss

Loss Fluctuations
Unstable Gradient: Exploding

Unstable Gradient: Vanishing

The DNN could not properly
minimize the loss.

The DNN (with regularization off)
should overfit a tiny sample of data.

Given N iterations

lossy =0

Issue

Verification Routine
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Program

Original program

TheDeepChecker: Execution Flow

H@@a

Monitoring

................................................

Monitored Program

Potential issues

|

Verification
Routines

|

Sanity Check of Program
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v DL coding bugs and misconfigurations

(77%, 83.3%).

v' TheDeepChecker outperforms SMD by detecting 75% rather than 60% of the total of reported bugs.

TheDeepChecker

vs Amazon SageMaker (SMD) @

Faults Base NN | Perf. | SMD Rule(s) Fired Check(s) TP | FP | EN
Uns-Inps!, PI-Loss?

Regr 24.20 - Un-Fit-Batch?, Uns-Act-HS* 1+3] 0 0

missing input normalization Uns-Inps, PT-Loss, Un-Fit-Batch
Shallow | 11.35% Ri.Rs.Ri4 Div-Loss®, Div-W¢, Div-B’, Div-Grad?® 1+6 | 0 0
Deep 85% Rq{,Rg.Rqg Uns-Inps, PI-Loss, Uns-Act-HS, NR-Eoss’ 1+2 | 1 0
over-scaled outputs Regr 20.14 Ry, Ry Uns-Outs'?, SD-Loss!!, Dead-ReLU", Uns-Act-HS | 1+3 | 0 0
Regr 2.86 - Uns-Inps, SD-Loss, Uns-Act-LS™, Un-Fit-Batch 143 | 0 0
redundant input normalization | Shallow | 33.75% Rs, Ry Uns-Inps, SD-Loss, W-Up-Slow!®, Uns-Act-LS 1+3 ] 0 0
Deep 77.5% -.Rg.Ry Uns-Inps, Uns-Act-LS 1+1| 0 0
Regr 1.72e7 - Un-Fit-Batch, Div-Loss, Uns-Act-HS 1+2| 0 0

gradients with flipped sign Un-Fit-Batch, Div-Loss, Div-W,
Shallow | 9.8% Ri1,Ry14 Div-B, Uns-Act-HS, Van-Grad® 1+5| 0 | 0
Deep 10% Ri1,R14 Un-Fit-Batch, Div-Loss, Uns-Act-HS, NR-Loss'® 1+2| 0 0

PI-Loss, Inv-Outs!’, SD-Loss W-Up-Slow,

missing softmax activation Shallow | 9.8% Ri4 Van-Grad, Un-Fit-Batch, Over-Reg-Foss'® 145 1 | 0
Deep 11.48% Ri4.Rs,R10 PI-Loss, Inv-Outs, Van-Grad 1+2 | 0 0
softmax out-and in-the loss Shallow | 99.29% - SD-Loss, W-Up-Slow(Dense) ‘ 0+2 | 0 1
Deep 83.24% -.Rs.Rio SD-Loss, HF-Loss™, W-Up-Slow(Dense), NRFoss® | 0+2 | 1 1
softmax over wrong axis Shallow | 99.45% Ryy PI-Loss, Inv-Outs, Inv-Out-Dep?!, Inv-Loss-Dep® | 2+2 | 0 0
Deep 85.86% Ri4,Rs.Ri0 PI-Loss, Inv-Outs, Inv-Out-Dep, Inv-Loss-Dep 2+2 1 0 0
CE over wrong axis Shallow | 8.92% R,.R; PI-Loss, Inv-Loss-Dep 240 | 0 0
Deep 86.79% -,Rg.Ryg PI-Loss, Inv-Loss-Dep 240 | 0 0
MSE with wrong broadcasting Regr 7.02 R, Un-Fit-Batch, SD-Loss, Van-Grad 0+3 | 0 1
inverted CE’s mean and sum Shallow | 11.34% Ryy PI-Loss 1+0 | 0 0
Deep 87.08% -.R3.Rip PI-Loss 1+0 | 0 0
Regr 7.27 - Corrupted Labels 1+0 | 0 0
shuffle only the features Shal%ow 11.35% - Corrugted Labels 1+0| 0 0
Deep 10.09% -,Rs.R;o Corrupted Labels 1+0 | 0 0
invalid data transformation Shallow | 99.24% - Shifted-Augmented-Data 1+0 | 0 | O
Deep 86.28% -.Rg.Ryo Shifted-Augmented-Data 140 | 0 0

are detected with (precision, recall), respectively, equal to (90%, 96.4%) and
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Testing Neural Networks Training Programs

HOUSSEM BEN BRAIEK, SWAT Lab., Polytechnique Montreal, Canada
FOUTSE KHOMH, SWAT Lab., Polytechnique Montréal, Canada

TheDeepChecker : Dynamic testing of DL programs
v" Capture defects during the training process.
v' Less expensive than testing the resulting model.

v Some overhead on the training process.

Try it out!

TOSEM’22

TheDeepChecker outperforms AWS SMD @
v DL coding bugs and misconfigurations are detected
with (precision, recall), respectively, equal to (90%,

96.4%) and (77%, 83.3%).

v" Finds 30% more defects than AWS SageMaker.
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DeepEvolution: A Search-Based Testing Approach ICSME’19, TOSEM"23

for Deep Neural Networks

Houssem Ben Braiek and Foutse Khomh
SWAT Lab., Polytechnique Montréal, Montréal, Canada
{houssem.ben-braiek, foutse.khomh}@polymtl.ca

v

v

e Oracle

Automated Test "o Pseudo Test 0
Input Generation o ‘
. @

Test Cases DNN Under Test

( Test Adequacy

L Evaluation J:
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DeepEvolution: Search-based Test Input Generation

IAut(:r(r;ated 'I::st . . ;'._'__-':_':_f_'i_':- Pseudo Test
nput Generation \ .
p ~o— ® Oracle @

Test Cases DMN Under Test
( Test Adequacy I

L Evaluation

Initial I Metaheu.rls'Flc-based H Fitness Evaluator }
Data L Optimizer

4 f
F
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DeepEvolution: DL-based Software Testing Workflow

Provided

[ Fitness Evaluation 1 [ Population Update }

|

‘ Population

Feasibility Checking

[ Local Coverage }

[ Global Coverage }

¢

\Coverage Analyzer

7

Initial Test Data Seed Input Pool

Generator
/ \
/ ——
Random Transformation
Initialization Metadata
~_ Transformer B
\ /

[ Sanity Checking } [ Label Matching }

Derived Oracle

Con

|

[ Misclassified Inputs ] [ Difference-inducing Inputs ]

60

Follow-up Tester

Failed Test Data



Semantically-Preserving Metamorphic Image Transformation

-®- Brightness

Contrast Pixel-value
— Transformations \
Pixel Perturbation

e.g.

Tuning the interval domain of each transformation’s parameters,
[th_R_min, th_R_max] = [tun_R_min, tun_R_max]

Translation

Scaling /

Shearing

Rotation .

D
ad
& Blurring
L,
_>
/7
C

61
th_R_{min, max} : {min, max} theoretical rotation angle tun_R_{min, max} : {min, max} tuned rotation angle



DeepEvolution: DL-based Software Testing Workflow

|
Provided ‘ Population [ Fitness Evaluation 1 [ Population Update }

Feasibility Checking W [ Local Coverage }

Generator

[ Global Coverage }

Random i | I Coverage Analyzer
Ej ( O [ Initialization 1 [ Transformation } Metadata

Transformer

Initial Test Data Seed Input Pool

S L —
[ Sanity Checking } [ Label Matching } [ DNN ]
Derived Oracle
— ———

@ [ Misclassified Inputs ] [ Difference-inducing Inputs ] -

Failed Test Data Follow-up Tester




Semantically-Preserving Metamorphic Image Transformation

-®- Brightness

Contrast Pixel-value + Sanity Check:

- Transformations SSIM (mutated, original) > threshold

Pixel Perturbation

Blurring )
Translation
Scaling Affine Tra nsformatio_lr_1s Conservative Strategy:
B They should be exclusively applied
il Shearing
O Rotation =

SSIM : Structural Similarity Index Metric



DeepEvolution: DL-based Software Testing Workflow

Provided ‘ Population [ Fitness Evaluation 1 [ Population Update } /\

4 N

Feasibility Checking W [ Local Coverage }

Generator

[ Global Coverage }

Random i | I Coverage Analyzer
Ej ( O [ Initialization 1 [ Transformation } Metadata

Transformer

Initial Test Data Seed Input Pool

[ Sanity Checking } [ Label Matching ] [ DNN ]
Derived Oracle

@ [ Misclassified Inputs ] [ Difference-inducing Inputs ] -

Failed Test Data Follow-up Tester




Neuron Coverage-based Fitness Function

NLNC : Novel Local Neuron Coverage
NGNC : Novel Global Neuron Coverage
a4, B1: Weights assigned to NLNC, NGNC

Original Input Synthetic Input (Descendant)
(Ancestor)

Rectified Liner Unit(ReLU)

— Activated

— activated g ev globally covered Deactivated
— eactivate

] covered J newlocallycovered | Threshold(pre-defined) .



DeepEvolution: DL-based Software Testing Workflow

e E—

\ |
Provided < ‘ Population [ Fitness Evaluation 1 [ Population Updateﬁ\>

Feasibility Checking [ Local Coverage }

[ Global Coverage }

R E—

Random i | I Coverage Analyzer
Ej ( O [ Initialization 1 [ Transformation } Metadata

Transformer

Initial Test Data Seed Input Pool

[ Sanity Checking } [ Label Matching } [ DNN ]
Derived Oracle

@ [ Misclassified Inputs ] [ Difference-inducing Inputs ] -

Failed Test Data Follow-up Tester




Vectorization of our metamorphic image-based transformations

The vector encoding of the compound metamorphic transformation:

Brightness Factor Contrast Factor ... | Translation X Translation Y Rotation Angle
\ A )
| I
Parameters of pixel transformations Parameters of affine transformations
A
Brightness Factor
bfmax
I‘ ----------------- _\_T"
Rotation Angle
i g rOtmax
................... s
Contrast Factor Clmax

Constrained Multidimensional Space 67



Nature-Inspired Metaheuristic for exploring the transformations’ space

"‘! ' No Free Lunch Theorem

Evolution-Based metaheuristics: Genetic Algorithm(GA).

a{f5A

Swarm-Based metaheuristics: PSO, CSA,BAT, GWO, MFO, WOA, MVO, FFA, and SSA.

Particle Swarm Opt. (PSO); Moth Flame Opt.(MFO);
Cuckoo Search Algo. (CSA); Whale Opt. Algo. (WOA);
Bat Algo. (BAT);

Salp Swarm Algo. (SSA)

Multi-Verse Opt. (MVO);
Gray Wolf Opt. (GWO); Firefly Algo. (FFA); 68



DeepEvolution outperformed TensorFuzz in finding defects
introduced during model quantization!

0 airplane %
f automobile E
2 bird 'ﬁ
3 MNIST dataset : cat k= CIFAR-10 dataset :
Y 28x28 grayscale images deer H 32x32 color images
10 classes 10 classes
g dog
6 o B
T horse . X2
' ship :;‘!;.
Y 4 truck 4
TensorFlow
tensorflow / models ® Watch | 2950 | rStar | 55979 YFork 34,980
<» Code lssues 1,395 Full requests 379 Frojects 2 Security Insights
Branch: master v | models / research / slim / nets / Create new file | Find file | History
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DiverGet: a search-based software testing approach
for Deep Neural Network quantization assessment

EMSE’22

Ahmed Haj Yahmed'® - Houssem Ben Braiek’ - Foutse Khomh' - Sonia Bouzidi?
Rania Zaatour?

Quantization

. (Bias)

yPred (Inputs)1 w l Yorea
. . . . W (Activation function)
(ACthi:lthl‘l functio ll) (Summatmn function)
(Summation function) (WEIghls)
R \

32-bit format Much smaller format .

(Inputs)—|




Search-based
Software Testing
Framework

Dedicated to
Quantization
Assessment

DG 5

DiverGet

Detecting

Difference-
Inducing Inputs

¢ QR
Class A 6@ @ Class B

as
i

Behavioral
Disagreements

between DNN
versions
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A

|
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MRs: Metamorphic Relation Formulation

(mo(Tr(X;)) = mg(T-(X:)) A (mo(X;) =yi), Vie{l. N}

mo : Original Model

mgq . Quantized Model

T} : Naturally-Occurring Distortion
(X;,y;) : Data point and its Ground Truth
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MRs: Naturally-Occurring Radiometric Distortions

Spectral Band Loss Line Stripping Column Stripping Continuous Line
Dropout

Continuous Column Region Dropout Discontinuous Line Discontinuous Column Salt and Pepper

Dropout Dropout Dropout Noise
74



MRs: Naturally-Occurring Geometric Distortions

Original Image Zoom In Zoom Qut Rotation
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Vectorization of our metamorphic image-based transformations

: @
Experts HS|
knowledge distortions

= |

=

ranges

Random selection of pixels and parameters

'

1 il jl kl al 0 in jn an Bn

w ~ H_} W_A ~ V.. v J
Binary Pixel Distortion Binary Pixel Distortion
activation coordinates parameters activation coordinates parameters
LN J L% J
ad hd 77

Distortion 1 Distortion n



Stopping criteria == False

Fitness Function Design

Population
Initialization

Fithess

Assignment

Selection

Generation of
New Population

Stopping criteria == True

Divergence-based
Fitness Function

Coverage-based
Fitness Function
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Fitness Function Design

U(2) = J(s0(2), 84(2))

$'(@) = —J(S;,57)

J(Q[[R) = ( (QIIM) + D(R[[M))

where D(Q||R) = ZQ )

and M = 5(@ + R).

e«
E] 1 6

where € is the exponential function

si=o(l;) =

- fori=1,...,¢

J(S55: 54) =

Edal

v |Se] + [Sz] + Sz n Sz

S ={5"|o(x,n) € 57},

Vm € [1,

M}
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Evaluation of DiverGet

RQ1: How effective is DiverGet’s main feature (i.e., the domain-specific
metamorphic relations and the search-based data transformation) at

finding difference-inducing inputs?

RQ2: How does DiverGet compare to DiffChaser?



Evaluation Subjects

Dataset Models Metaheuristics Quantization methods

Pavia University Spectral-Spatial Residual Particle Swarm Post Training Quantization

(PU) i Network I Optimization I (PTQ)
| (SSRN) (PSO)
Salinas i Hybrid Spectral i Genetic Algorithm i Quantization Aware Training
(SA) | Neural Network | (GA) | (QAT)
| (HybridSN) | |
- : : : |
— | | | 1’
-U TensorFlow Lite
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RQ1: The effectiveness of DiverGet as a novel
quantization assessment framework

Naturally-occurring synthetic inputs vs original test inputs:

# DII - O=i~inal # DII - Random

Model Dataset @ Quantization

Tes’. Data sarrpling ‘RS)

PTQ /136 /1609
PU |

QAT 1 763

SSRN

PT 0 132
SA «

QAT 40 < 498

PT 0 133
PU «

QAT 1 522

hybridSN

PTQ 0 | 110
SA

QAT 10 50

# DIl: number of
Difference-
Inducing Inputs

Finding 1: the designed domain-specific metamorphic relations expose uncovered divergences caused by quantization

that original test data failed to highlight.
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RQ1: The effectiveness of DiverGet as a novel
quantization assessment framework

Population-based metaheuristic algorithms vs Random Sampling

Model Dataset Quantization

U PTQ 1.07  3.75 \ 1.05 75.8
QAT 0.48 3.89 15.68 70.28
SSRN l
PT 0.03 3.3 05  70.43
SA < <
QAT 0.33  3.45°gf18.27  70.72
ol PTQ 0.08 366l 843 67.77
, QAT 0.43  3.84M110.92 67.5
hybridSN
PTQ 0.02 2 3.07 67
SA
QAT Q25 .85 \NI6 £18

DiR: Divergence Rate
VR: Validation Rate

Finding 2: DiverGet’s searching strategy using population-based metaheuristic succeed in outperforming the Random

Sampling strategy into steering the generation into prominent regions.
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RQ2: DiverGet vs. DiffChaser

PU
Framework PTQ QAT PTQ

Average

DiR SR DiR SR DiR SR DiR

SSRN 16.66 49.38 0.31 10.63 0.35 9.69 3.68 16.5y
Diff Chaser Hybrid

-SN
DiverGet SSRN 2496 71.25 16.42 61.25 3.60 43.75 13.92 63.44 /< N

. 14.59 40.0%
(PSO)  Hybrid oo, o35 2008 oo e 935 1406 11.42 209

0.001 0.31 0.002 0.31 0.001 0.63 1.22 2.50

-SN (**) (*)
DiverGet  SSRN 3590 58.75 28.86 37.50 14.47 20.63 31.93 43.7°
. Q.40 27.27
(GA) H_%kl’\?d 12.06 13.75 %;2%2 20.94 5.32 5.63 15.40 1(1')19

DiverGet outperforms DiffChaser in terms of number of revealed
disagreements with a higher success rate!



Faults in Deep Reinforcement Learning Programs: A
Taxonomy and A Detection Approach

A probabilistic framework for mutation testing in deep neural networks

Amin Nikanjam - Mohammad Mehdi Florian Tambon °, Foutse Khomh, Giuliano Antoniol

lgdor(gfat} k Foutse Khomh - Houssem Department of Software Engineering - Polytechnique Montreal, 2500, chemin de Polytechnigue, Montreal, H3T1J4, Quebec, Canada
en Braie

Exploration Q-network
checked
" Jorati : bool Hyperparameters Gz
update_exploration_rate: bool ] last_layer_activation: string

decay_factor: real

explorationRate: real batchSize: int

epochCount: int

has has

has

Mutation Testing of Deep Reinforcement Learning
Based on Real Faults

Q-values_to_train

periodically_updates

oL program D T
checked uses—>|

send_action

action_indication: bool target-network
is_update_eq_valid: bool ha checked
g repeats
alpha: real updateFrequency: int P
interacts-with gamma: real

continues-by

Environment Initialize detect
checked sy checked
name: string close

Automated Quality Assurance
Tools are essential!
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Complex corner cases
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Server: 6 FPS
Client: 42 FPS
Camera: 6 FPS

Vehicle: Tesla Model3
Map: Town03
Simulation time: f-80-05

Speed: 8 km/h
Compass: 2" NE
Accelero: ( 6.4, -0.0, 9.2)
Gyroscop: ¢ -1.6, -0.68, 0.8)
Location: { B4.7, -1159.3)
GNSS: ( 49.001081, B8 001160)

Height= 8nm 8

Throttle:
Steer:
Brake:
Reverse:
Hand brake:-
Manual:
Gear:

Collision:

Number of wvehicles:
Nearby wehicles:

19m Audi Tt

23m Brw Grandtourer

28m Brw Isetta

28m Nissan Micra

31m Lincoln Mkz2017

32m Bmw Isetta

34m Mercedes-Benz Coupe

35m Lincoln Mkz2017

37m Carlamotors Carlacola

Software in the loop testing!




Realistic simulator (CARLA, LGSVL, BeamNG)

Test scenario
specification

Output traces of
system behavior

We aim to generate
fault-revealing
scenarios!

Challenges:

e Vast search space

* Evaluating test scenarios is expensive
* The need for diverse test scenarios
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AmbieGen: A Search-based Framework for Autonomous
: )
Systems Testing IST’21

Dmytro Humeniuk, Foutse Khomh, Giuliano Antoniol

Multi-objective search algorithm (NSGA-II) with 2 objectives:
 Maximize the difficulty of test scenarios, respecting the constraints
 Maximize the diversity of test scenarios

In/t/al el Selectlon Crossover Mutat/on Select best
scenarios test scenarios

IDQDD INNEN B-fa B8 H?ID
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Flexible representation, applicable to different test

problems
Element 1 Element 2 Element N
Element type Straight segment Curved segment | Curved segment
Parameter 1 Segment length 10
Parameter 2 Turning angle 60 | Turning angle 30

Lane keeping
system testing

40
=IIIIIIIIIIlllIIIIIIIIII=IIIIIIIIIIIIII=

[ |
Ir-— Robot path u
Ho e

] ]
2| B UNEEEEEEEEEEEES
lllllllllllllllllllllllllllllllllllllllll

Mobile robots
testing
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Using a simplified model of the system to guide the
search

Quite effective, achieving the 1% place in
SBST 2022 competition

TOOL BEAMNG.AI

Vehicle kinematic

ADAFRENETIC 0.183 0.044
AMBIEGEN @052 @033
FRENETICV @ 0.447 0.302
GENRL 0.237 0.211

EVOMBT 0.216 0.200

WOGAN @ 0.514 @ o0.262
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Reinforcement learning informed evolutionary search for
autonomous system testing
TOSEM’23

DMYTRO HUMENIUK, Polytechnique Montréal, Canada
FOUTSE KHOMH, Polytechnique Montréal, Canada
GIULIANO ANTONIOL, polytechnique Montréal, Canada

Using gradient based algorithms for smart initialization

| Test cases (TC)
[ Trained RL agent ] £ xPop size TC, N
Initial HEvolutionaryJ‘ G, Test
populat|on search - suite
TCy |

]
[ Random generator | (1—2) x Pop size



Training the RL agent to generate challenging
scenarios with domain knowledge-based rewards

State: 2D array defining the test scenario

Actions: new element to add to the scenario

Reward: using simplified model to estimate
the reward

PPO algorithm

Action 3
Action 2

Action 1

Action N

-

High reward

20!
175
150
125
100
75

Low reward
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RIGAA outperforms MOEA with random initialization

RL vs Random generator

Number of failures

_ 40
8 __
I )
0]
5 30
‘©
Y
5 20 T —
0
S .E o
S 10;
=
Random RL agent 0 RIGAA NSGA-I]
Generator 2h experiment

Try it out!

Failure sparseness
= N w N
o o o o

o

Diversity of failures

. -1
L
1
(9]
RIGAA NSGA-II

2h experiment
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Ensuring the safety and auditability of ML-based
components is challenging

Running
System

Integration 1
Tests

System
Monitoring

Traditional System Testing and Monitoring

Deep Learning Model Verification Using Graph
Transformations

AMIN NIKANJAM, K. N. Toosi University of Technology, Iran and SWAT Lab,, Polytechnique Montreal,
Canada

HOUSSEM BEN BRAIEK", SWAT Lab., Polytechnique Mc
MOHAMMADMEHDI MOROVATI, SWA'
FOUTSE KHOMH, SWAT Lab., Polytechnique Montreal, Canada

al, Canada

Montreal, Canada

Neuralint : A linter for DL programs

v/ Capture defects early, so saves rework cost

v Less expensive, because it doesn’t require
execution

v" Find defects in seconds

Vo

Automated Quality Assurance tools

Data

Data Tests Monitoring

1 [

ML Infrastructure Model
Tests Tests
Model
Code - Training

Prediction
Monitoring

Running
System

Integration
Tests

System
Monitoring

ML-Based System Testing and Monitoring

Testing Neural Networks Training Programs

HOUSSEM BEN BRAIEK, SWAT Lab., Polytechnique Montreal, Canada
FOUTSE KHOMH, SWAT Lab., Polytechnique Montréal, Canada

TheDeepChecker . Dynamic testing of DL programs

v' Capture defects during the training process

v' Less expensive than testing the resulting model
v" Finds 30% more defects than AWS SageMaker
Vo

are needed!

Test scenario

Multi-dimensional space of DL bugs
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incorrect gradient
computation

incorrect feature
extraction

Implementation Issues

#
correct

Realistic simulator (CARLA, LGSVL, BeamNG)

Output traces of

specification

Challenges:

* Vast search space

system behavior

x1000 RPM

We aim to generate
fault-revealing
scenarios!

* Evaluating test scenarios is expensive
* The need for diverse test scenarios
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