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Engineering Trustworthy AI systems
System evolution & continuous delivery
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Some Team Members
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Engineering Trustworthy AI systems requires

Developing AI models and algorithms that are not only accurate, but 
also :

Explainable, 
Fair, 
Privacy-preserving, 
Causal, and 
Robust.
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Autonomous Driving Systems are expected to change mobility
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• Improved road safety
• Increase Productivity
• Increased accessibility
• Reduce Costs?
• Reduce Congestion?
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“By 2035, autonomous driving could create $300 billion to 
$400 billion in revenue.”
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AI is leading the way 
for the launch of Level 
4/5 autonomous 
vehicles
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A Typical Autonomous Driving Car today!
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Neural Networks 
are at the core of 
their perception 
system!
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13https://www.nature.com/articles/s42256-022-00520-5
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The Apollo Autonomous Driving System

15https://dl.acm.org/doi/pdf/10.1145/3368089.3417063



A single autonomous car will produce more data in a year than the roughly 320 million monthly 
users of Twitter create (Kastrenakes, 2019; Matthews, 2018)
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https://www.theverge.com/2019/2/7/18213567/twitter-to-stop-sharing-mau-as-users-decline-q4-2018-earnings
https://bigdatashowcase.com/how-much-big-data-companies-make-on-internet/


Architecture of an Autonomous Driving system

https://channgo2203.github.io/av_software/ 17



Ensuring the safety and auditability of ML-based 
components is challenging

18

Eric Breck Shanqing Cai Eric Nielsen Michael Salib D. Sculley Proceedings of IEEE Big Data (2017)



Ensuring the auditability of ML-based components is 
challenging because…

• Current state-of-the-art models are hard to interpret (i.e., black 
box)

19

Input Output



Moreover, current popular explanation methods are unfortunately not 
reliable!

20https://medium.com/@beenkim/beyond-interpretability-4bf03bbd9394



Neither can we fully trust current post-hoc XAI techniques 
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They often disagree!

ICSME’22
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Even worse, current post-hoc XAI techniques …

…can be manipulated easily!

ICLR’23



ML models are vulnerable to carefully crafted perturbations (adversarial 
robustness).

23https://portswigger.net/daily-swig/trojannet-a-simple-yet-effective-attack-on-machine-learning-models
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Moreover, they hardly generalize out-of-distribution.
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How can we provide safety guarantees that are 
required to reach Level 4/5? 

https://pubs.rsna.org/doi/10.1148/rg.305105013

Extensive testing!
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[4]Han et al., What do Programmers Discuss about Deep Learning Frameworks
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Preliminary 
preparation

ML Development Phases 

[5] ELI STEVENS, LUCA ANTIGA, AND THOMAS VIEHMANN Deep Learning With Pytorch p286

Environment Preparation

CPU, GPU management
Resolve Frameworks/libraries versions
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Provided by DL Frameworks
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- Shape
- Size
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- Data Type
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[5] vikashraj luhaniwal., Analyzing different types of activation functions in neural networks — which one to prefer?

[5]

Activation Function Loss FunctionChoice of the architecture

(Hyper)parameters
 Learning rate
 Batch size

(Hyper)parameters Set Up

Optimizers
 Adam
 Momentum
 RMSProp

Model Optimizers
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Multi-dimensional space of ML faults
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…

Implementation Issues
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Finding bugs in ML programs is hard

Common sentiment among practitioners

• 80-90% of time is spent debugging and tuning.

• 10-20% is spent on figuring the mathematics and implementing the 
code for training.

38



Why is finding bugs in ML programs hard?

Most ML bugs are invisible

39

Labels out of order!

Full Stack Deep Learning, UC Berkeley, 2021



Why is finding bugs in ML programs hard?

40
Models can be very sensitive to small differences in hyperparameters!

He, Kaiming et al. “Delving Deep into Rectifiers: Surpassing Human-Level 
Performance on ImageNet Classification.” 2015 IEEE International 
Conference on Computer Vision (ICCV) (2015): 1026-1034.

Andrej Karpathy, CS231n  course notes



Example of Bugs and  Design Issues in a CNN

41

 is a bug:
◦ Incompatibility between softmax as output activation 

and binary_crossentropy as loss function

 and  are design issues:
◦ Decreasing filters count: 224 > 55 > 13
◦ Decreasing filtering spatial size: (11, 11) > (5, 5) > (3, 3)
◦ Both represent poor structural choices
◦ Violating design patterns of effective and optimal CNN 

architectures
◦ Leading to bad performance
◦ Low accuracy
◦ Long training time
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TOSEM’21

NeuraLint : A linter for DL programs

 Capture defects early, so saves rework cost.

 Less expensive, because it doesn’t require 
execution.

 Find defects in seconds.

 …

NeuraLint is fast and effective!

 It achieves an accuracy of 91.7 % .

 It correctly reported 18 additional bugs that were 
not found by developers.

 The average execution time of NeuraLint for the 
studied TensorFlow and Keras based programs are 
2.892 and 3.197 seconds, respectively.

Try it out!



NeuraLint has two pillars

43

A meta-model of DL programs Taxonomy of common DL faults

Gunel Jahangirova, Nargiz Humbatova, Gabriele Bavota, Vincenzo Riccio, Andrea Stocco, and Paolo Tonella. 2019. Taxonomy of Real Faults in Deep 
Learning Systems. arXiv preprint arXiv:1910.11015
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“Generic?”

“unclear”

A fault in a DL 
component?

Generic fault? “False positive”

Can be labelled?

Label the issue

Yes No

Yes No (DL fault)

Yes No

Identification of Common DL Faults

Frameworks

Sources

Artifact extraction

Open Coding



23 rules capturing common errors in DL programs (an excerpt)
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• Reshaped Data Retention

→A reshape layer should preserve the number of data elements. We verify that the product of 
original tensor dimensions equals to the product of reshaped tensor dimensions.

• Unnecessary Activation Removal

→Multiple and redundant connected activations are not allowed. Since all activation functions are 
designed to transform real values into a restricted interval, successive activations produce 
erroneous outputs.

• Zero Gradients Reset

→The gradients should be re-initialized after each training iteration. This clears old gradients from 
the last step; otherwise accumulating the gradients hinders the optimization process. Some DL 
libraries (e.g., Pytorch) delegates this necessary reset step to their users.



Graph transformations for ‘Unnecessary Activation Removal’

46Graph transformations are very efficient for finding violations of some conditions in a graph

HG,  (LHS, RHS, NAC)
HG: Host graph
LHS: Precondition of the rule
RHS: postcondition of the rule
NAC: Negative Application Condition, i.e., the rule can be 
applied only when NAC does not exist in the host graph

Application of the rule

(1) find a matching of LHS  in HG, 
(2) check NAC that forbid the presence of certain nodes and 

edges, 
(3) remove a part of HG that can be mapped to LHS but not to 

RHS, 
(4) a specific fault code is added to the node or edge in which 

the violation occurred.



NeuraLint: Execution Flow

47

Graph transformation
Rules  

Potential issues

Program

Original program

Model Extraction

Model

Run

List of detected Issues
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NeuraLint: Model-based verification of DL programs



Evaluation of NeuraLint

49

18 Real-world DL programs 
with reported bugs

 In total, 22 out of 24 bugs are detected correctly by NeuraLint (91.7 %). Moreover, NeuraLint correctly
reported 18 additional bugs that were not found by developers.

 The average execution time of NeuraLint for the studied TensorFlow and Keras based programs are 2.892 and 
3.197 seconds respectively, it is therefore quite efficient!



TheDeepChecker outperforms AWS SMD

 DL coding bugs and misconfigurations are detected 
with (precision, recall), respectively, equal to (90%, 
96.4%) and (77%, 83.3%).

 Finds 30% more defects than AWS SageMaker.

50

TOSEM’22

TheDeepChecker : Dynamic testing of DL programs

 Capture defects during the training process.

 Less expensive than testing the resulting model.

 Some overhead on the training process.

…

Try it out!



51

TheDeepChecker verification rules
Parameters-related Issues Untrained Parameters

Poor Weight Initialization 

Parameters’ Values Divergence

Parameters Unstable Learning

Activation-related Issues Activations out of Range

Neuron Saturation

Dead ReLU

Optimization-related Issues Unable to fit a small sample 

Zero Loss

Diverging Loss

Slow or Non decreasing Loss

Loss Fluctuations

Unstable Gradient: Exploding

Unstable Gradient: Vanishing



Parameters-related Issues Untrained Parameters
Given a layer 𝑖𝑖 and 𝑁𝑁 iterations 

𝑊𝑊𝑖𝑖
0 = 𝑊𝑊𝑖𝑖

1 ,𝑏𝑏𝑖𝑖0 = 𝑏𝑏𝑖𝑖1

𝑊𝑊𝑖𝑖
1 = 𝑊𝑊𝑖𝑖

2 ,𝑏𝑏𝑖𝑖1 = 𝑏𝑏𝑖𝑖2
…

𝑊𝑊𝑖𝑖
𝑁𝑁−1 = 𝑊𝑊𝑖𝑖

𝑁𝑁 ,𝑏𝑏𝑖𝑖𝑁𝑁−1 = 𝑏𝑏𝑖𝑖𝑁𝑁 Is
su

e

Poor Weight Initialization 

Parameters’ Values Divergence

Given a layer 𝑖𝑖 and an iteration 𝑗𝑗

𝑊𝑊𝑖𝑖
𝑗𝑗 ≠ 𝑊𝑊𝑖𝑖

𝑗𝑗+1𝑏𝑏𝑖𝑖
𝑗𝑗 ≠ 𝑏𝑏𝑖𝑖

𝑗𝑗+1

∀ 𝑗𝑗 ∈ [0,𝑁𝑁 − 1]

Ve
rif

ic
at

io
n 

Ro
ut

in
eParameters Unstable Learning

TheDeepChecker verification rules
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Activation-related Issues Activations out of Range

Given a layer 𝑖𝑖

𝐴𝐴𝑖𝑖 ∉ [𝑚𝑚𝑚𝑚𝑚𝑚,𝑚𝑚𝑚𝑚𝑚𝑚] Is
su

e

Neuron Saturation

Given a layer 𝑖𝑖

𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝐴𝐴𝑖𝑖 ≤ 𝑚𝑚𝑚𝑚𝑚𝑚

Ve
rif

ic
at

io
n 

Ro
ut

in
e

Dead ReLU

TheDeepChecker verification rules
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Optimization-related Issues Unable to fit a small sample 

The DNN could not properly 
minimize the loss. 

Is
su

eZero Loss

Diverging Loss

Slow or Non decreasing Loss

The DNN (with regularization off) 
should overfit a tiny sample of data.

Given N iterations

𝑙𝑙𝑙𝑙𝑙𝑙𝑠𝑠𝑁𝑁 = 0

Ve
rif

ic
at

io
n 

Ro
ut

in
eLoss Fluctuations

Unstable Gradient: Exploding

Unstable Gradient: Vanishing

TheDeepChecker verification rules
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Program

Pre-processing

Post-processing

Verification
Routines

Potential issues

Program

Original program

Monitoring

Monitored Program

Run

Sanity Check of Program

TheDeepChecker: Execution Flow



TheDeepChecker vs Amazon SageMaker (SMD) 

56

 DL coding bugs and misconfigurations  are detected with (precision, recall), respectively, equal to (90%, 96.4%) and 
(77%, 83.3%).

 TheDeepChecker outperforms SMD by detecting 75% rather than 60% of the total of reported bugs.



TheDeepChecker outperforms AWS SMD

 DL coding bugs and misconfigurations are detected 
with (precision, recall), respectively, equal to (90%, 
96.4%) and (77%, 83.3%).

 Finds 30% more defects than AWS SageMaker.

57

TOSEM’22

TheDeepChecker : Dynamic testing of DL programs

 Capture defects during the training process.

 Less expensive than testing the resulting model.

 Some overhead on the training process.

…

Try it out!



58

Automated Test 
Input Generation

Test Adequacy 
Evaluation

Pseudo Test 
Oracle

Test Cases DNN Under Test

ICSME’19, TOSEM’23
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Search-based Software Testing

Metaheuristic-based 
Optimizer Fitness EvaluatorInitial 

Data

DeepEvolution: Search-based Test Input Generation

Automated Test 
Input Generation

Test Adequacy 
Evaluation

Pseudo Test 
Oracle

Test Cases DNN Under Test
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Initial Test Data Seed Input Pool

Fitness Evaluation

Feasibility Checking

Population Population Update

TransformationRandom 
Initialization Metadata

Sanity Checking Label Matching

Local Coverage

Global Coverage

Misclassified Inputs Difference-inducing Inputs

Failed Test Data

DNN

Generator

Transformer

Follow-up Tester

Coverage Analyzer

Undefined 
Extensible

Provided

DeepEvolution: DL-based Software Testing Workflow 
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Affine Transformations

Pixel-value 
Transformations

Tuning the interval domain of each transformation’s parameters,
e.g.
[th_R_min, th_R_max]  [tun_R_min, tun_R_max]

th_R_{min, max} : {min, max} theoretical rotation angle tun_R_{min, max} : {min, max} tuned rotation angle

Semantically-Preserving Metamorphic Image Transformation 

Brightness

Contrast

Pixel Perturbation

Blurring

Translation

Scaling

Shearing

Rotation
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Initial Test Data Seed Input Pool

Fitness Evaluation

Feasibility Checking

Population Population Update

TransformationRandom 
Initialization Metadata

Sanity Checking Label Matching

Local Coverage

Global Coverage

Misclassified Inputs Difference-inducing Inputs

Failed Test Data

DNN

Generator

Transformer

Follow-up Tester

Coverage Analyzer

Undefined 
Extensible

Provided

DeepEvolution: DL-based Software Testing Workflow 



Affine Transformations

Pixel-value 
Transformations 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜) > 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

SSIM : Structural Similarity Index Metric 

Sanity Check:

They should be exclusively applied

Conservative Strategy:
+

+

Semantically-Preserving Metamorphic Image Transformation 

Brightness

Contrast

Pixel Perturbation

Blurring

Translation

Scaling

Shearing

Rotation
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Initial Test Data Seed Input Pool

Fitness Evaluation

Feasibility Checking

Population Population Update

TransformationRandom 
Initialization Metadata

Sanity Checking Label Matching

Local Coverage

Global Coverage

Misclassified Inputs Difference-inducing Inputs

Failed Test Data

DNN

Generator

Transformer

Follow-up Tester

Coverage Analyzer

Undefined 
Extensible

Provided

DeepEvolution: DL-based Software Testing Workflow 
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𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑠𝑠1 = 𝛼𝛼1 × 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 + 𝛽𝛽1 × 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁
𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵 ∶ Novel Local Neuron Coverage
𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵 ∶ Novel Global Neuron Coverage
𝜶𝜶𝟏𝟏,𝜷𝜷1: Weights assigned to NLNC, NGNC

Original Input         
(Ancestor)

activated

covered

new globally covered

new locally covered
Deactivated

Activated

Synthetic Input (Descendant)

Rectified Liner Unit(ReLU)

Threshold(pre-defined)

Neuron Coverage-based Fitness Function 
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Initial Test Data Seed Input Pool

Fitness Evaluation

Feasibility Checking

Population Population Update

TransformationRandom 
Initialization Metadata

Sanity Checking Label Matching

Local Coverage

Global Coverage

Misclassified Inputs Difference-inducing Inputs

Failed Test Data

DNN

Generator

Transformer

Follow-up Tester

Coverage Analyzer

Undefined 
Extensible

Provided

DeepEvolution: DL-based Software Testing Workflow 
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Parameters of pixel transformations Parameters of affine transformations

The vector encoding of the compound metamorphic transformation: 

Constrained Multidimensional Space

Brightness Factor 

Contrast Factor 

Rotation Angle

𝑟𝑟otmax

bfmax

cfmax

Vectorization of our metamorphic image-based transformations

Brightness Factor Contrast Factor … Translation X Translation Y Rotation Angle … 
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Particle Swarm Opt. (PSO);
Cuckoo Search Algo. (CSA);
Bat Algo. (BAT);

Gray Wolf Opt. (GWO);

Moth Flame Opt.(MFO); 
Whale Opt. Algo. (WOA);

Multi-Verse Opt. (MVO);
Firefly Algo. (FFA);

Salp Swarm Algo. (SSA)

Nature-Inspired Metaheuristic for exploring the transformations’ space

Evolution-Based metaheuristics: Genetic Algorithm(GA).

Swarm-Based metaheuristics: PSO, CSA,BAT, GWO, MFO, WOA, MVO, FFA, and SSA.

No Free Lunch Theorem
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DeepEvolution outperformed TensorFuzz in finding defects 
introduced during model quantization!

CIFAR-10 dataset : 
- 32x32 color images 
- 10 classes

MNIST dataset : 
- 28x28 grayscale images 
- 10 classes

× 1
× 2 × 1

× 2

𝑫𝑫𝟏𝟏 𝑫𝑫𝟐𝟐
𝑫𝑫𝟏𝟏 𝑫𝑫𝟐𝟐



70

Quantization

32-bit format Much smaller format

EMSE’22
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DiverGet

Search-based 
Software Testing 

Framework 

Dedicated to 
Quantization 
Assessment

Detecting 
Difference-

Inducing Inputs

Behavioral 
Disagreements 
between DNN 

versions

Class A Class B
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Search Space 
Design

Population 
Initialization

Fitness 
Assignment

Update

Generation of 
New Population

Metamorphic 
Relations (MRs)

Pre p a ra t ion Workflow

Stopping criteria == True

Stopping criteria == False



Motivation Proposed Solution Conclusion

MRs: Metamorphic Relation Formulation

73



MRs: Naturally-Occurring Radiometric Distortions

Original Image Spectral Band Loss Line Stripping Column Stripping Continuous Line 
Dropout

Continuous Column 
Dropout

Region Dropout Discontinuous Line 
Dropout

Discontinuous Column 
Dropout

Salt and Pepper 
Noise

Proposed Solution Empirical Evaluation Conclusion

74



MRs: Naturally-Occurring Geometric Distortions

Original Image

120°

Zoom In RotationZoom Out

Motivation Proposed Solution Conclusion

75



Proposed Solution

77

Vectorization of our metamorphic image-based transformations
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Fitness Function Design

Population 
Initialization

Fitness 
Assignment

Selection

Generation of 
New Population

Stopping criteria == True

Stopping criteria == False

Divergence-based 
Fitness Function

Coverage-based 
Fitness Function



Fitness Function Design

Population 
Initialization

Motivation

Divergence-based 
Fitness Function

Coverage-based 
Fitness Function

79



Evaluation of DiverGet

• RQ1: How effective is DiverGet’s main feature (i.e., the domain-specific 

metamorphic relations and the search-based data transformation) at 

finding difference-inducing inputs? 

• RQ2: How does DiverGet compare to DiffChaser? 
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Evaluation Subjects

Quantization methodsDataset

Post Training Quantization
(PTQ)

Quantization Aware Training
(QAT)

Models

Pavia University
(PU)

Salinas
(SA)

Spectral-Spatial Residual 
Network
(SSRN)

Hybrid Spectral 
Neural Network 

(HybridSN)

Metaheuristics

Particle Swarm 
Optimization

(PSO)

Genetic Algorithm
(GA)



RQ1: The effectiveness of DiverGet as a novel 
quantization assessment framework

Naturally-occurring synthetic inputs vs original test inputs:

# DII:  number of 
Difference-
Inducing Inputs

Finding 1: the designed domain-specific metamorphic relations expose uncovered divergences caused by quantization 
that original test data failed to highlight. 82



RQ1: The effectiveness of DiverGet as a novel 
quantization assessment framework

Population-based metaheuristic algorithms vs Random Sampling

DiR:  Divergence Rate
VR: Validation Rate

Finding 2: DiverGet’s searching strategy using population-based metaheuristic succeed in outperforming the Random
Sampling strategy into steering the generation into prominent regions. 83
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RQ2: DiverGet vs. DiffChaser

DiverGet outperforms DiffChaser in terms of number of revealed
disagreements with a higher success rate!
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Automated Quality Assurance 
Tools are essential!



Adversarial weather conditions

86



Complex corner cases

87
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Software in the loop testing!



Challenges:
• Vast search space
• Evaluating test scenarios is expensive
• The need for diverse test scenarios

Output traces of 
system behavior

Test scenario 
specification

We aim to generate 
fault-revealing 

scenarios!

Realistic simulator (CARLA, LGSVL, BeamNG)

89



Multi-objective search algorithm (NSGA-II) with 2 objectives:
• Maximize the difficulty of test scenarios, respecting the constraints
• Maximize the diversity of test scenarios

Selection
2

Crossover 
3

Mutation
4

Select best 
test scenarios

5
Initial test 
scenarios

1

90

IST’21



Flexible representation, applicable to different test 
problems

Element 1 Element 2 Element N

Element type Straight segment Curved segment Curved segment

Parameter 1 Segment length 10

Parameter 2 Turning angle 60 Turning angle 30

Lane keeping 
system testing

Mobile robots 
testing

91



Using a simplified model of the system to guide the 
search

Front tire

Rear tire

Vehicle kinematic 
bicycle model 

Quite effective, achieving the 1st place in 
SBST 2022 competition

Try it out!
92



Evolutionary         
search

Trained RL agent

Random generator

TC1

…
Test 
suite

Test cases (TC)
ε x Pop size

Initial 
population

Using gradient based algorithms for smart initialization

TC2

TCN

93

TOSEM’23



Training the RL agent to generate challenging 
scenarios with domain knowledge-based rewards

High reward

Low reward

• State: 2D array defining the test scenario
• Actions: new element to add to the scenario
• Reward: using simplified model to estimate 

the reward
• PPO algorithm

Action 1

Action 2
Action 3

Action N

94



RIGAA outperforms MOEA with random initialization

Number of failures Diversity of failuresRL vs Random generator

Try it out!
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