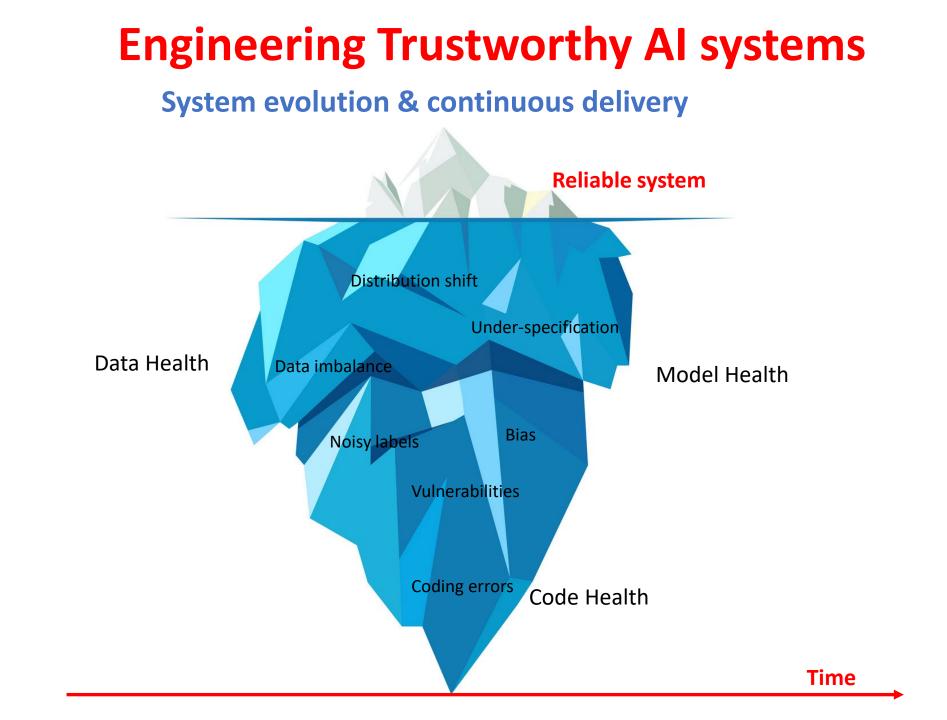
Engineering Trustworthy AI Systems

Foutse Khomh, PhD, Ing. <u>foutse.khomh@polymtl.ca</u> <u>X</u>@SWATLab Canada CIFAR AI Chair on Trustworthy Machine Learning Systems FRQ-IVADO Research Chair on Software Quality Assurance for Machine Learning Applications

SoftWare Analytics and Technologies Lab



Some Team Members

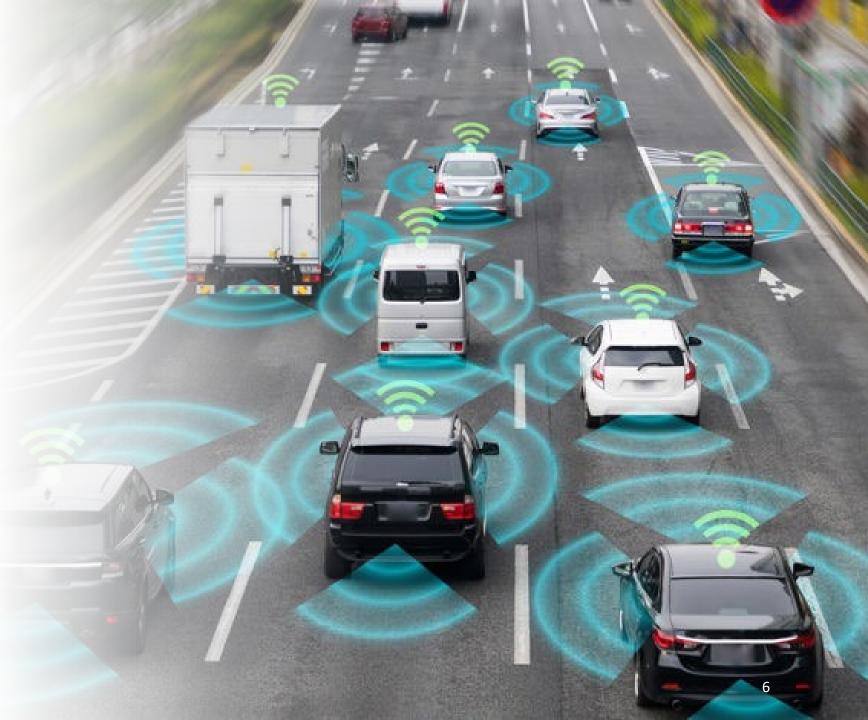
Engineering Trustworthy AI systems requires

Developing AI models and algorithms that are **not only accurate**, but also :

- ✓ Explainable,
- ✓ Fair,
- ✓ Privacy-preserving,
- \checkmark Causal, and
- ✓ Robust.

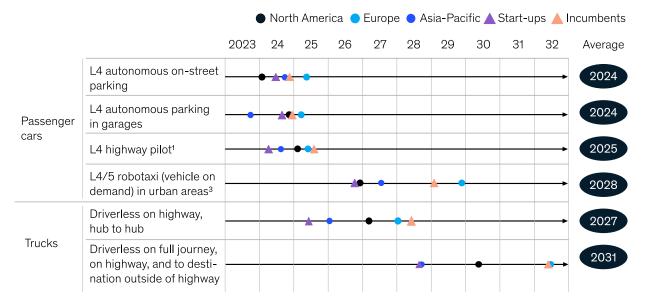
Autonomous Driving Systems are expected to change mobility

- Improved road safety
- Increase Productivity
- Increased accessibility
- Reduce Costs?
- Reduce Congestion?



"By 2035, autonomous driving could create \$300 billion to \$400 billion in revenue."

Most survey respondents expect L4 use cases to emerge by 2024 or 2025.

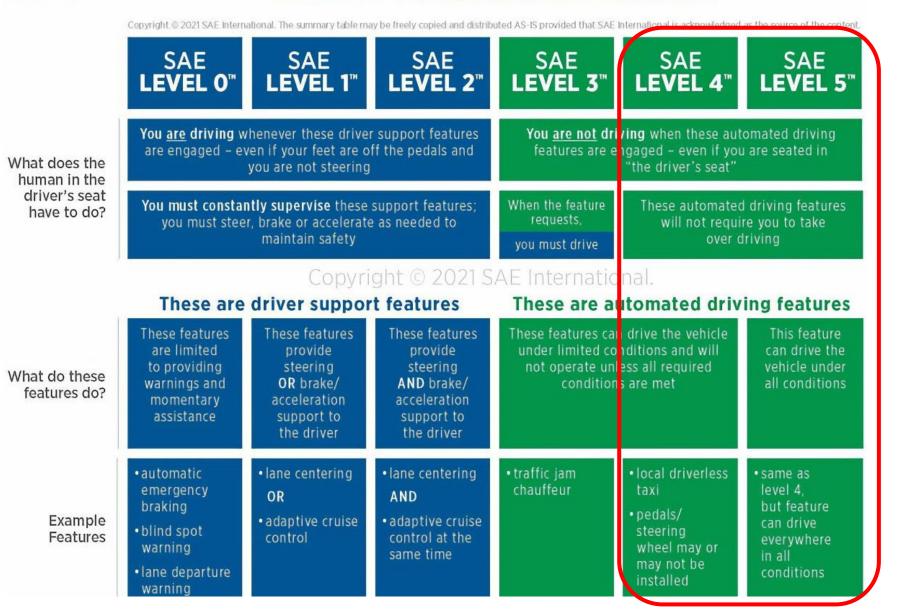


¹Driver can use the time on highways for work or leisure activities using in-car or own solutions but needs to take over at highway exits. ²Driver can use the time on highways in urban environments for work or leisure activities using in-car or own solutions but may require some driver intervention. ³Robotaxis drive everywhere fully automated with no driver and accept and conduct transportation requests (goods, passengers). Passenger can use the travel time for work or leisure activities.

Question: In your estimation, what is the rollout (ie, commercial availability of vehicles/service) timeline for autonomous driving across use cases in your region? Source: 75 respondents (North America, n = 31; Europe, n = 33; Asia–Pacific, n = 11)

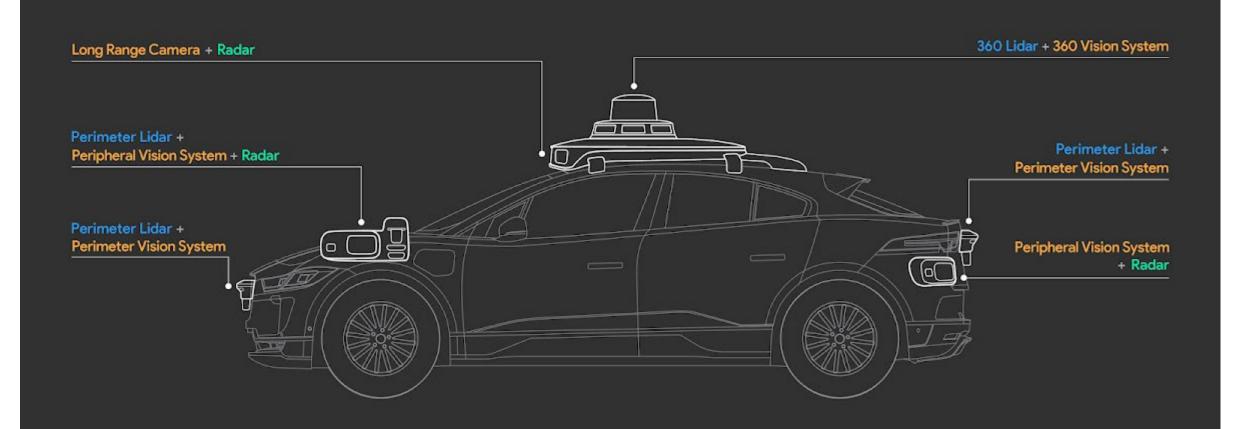
SAE J3016[™] LEVELS OF DRIVING AUTOMATION[™]

Learn more here: sae.org/standards/content/j3016_202104

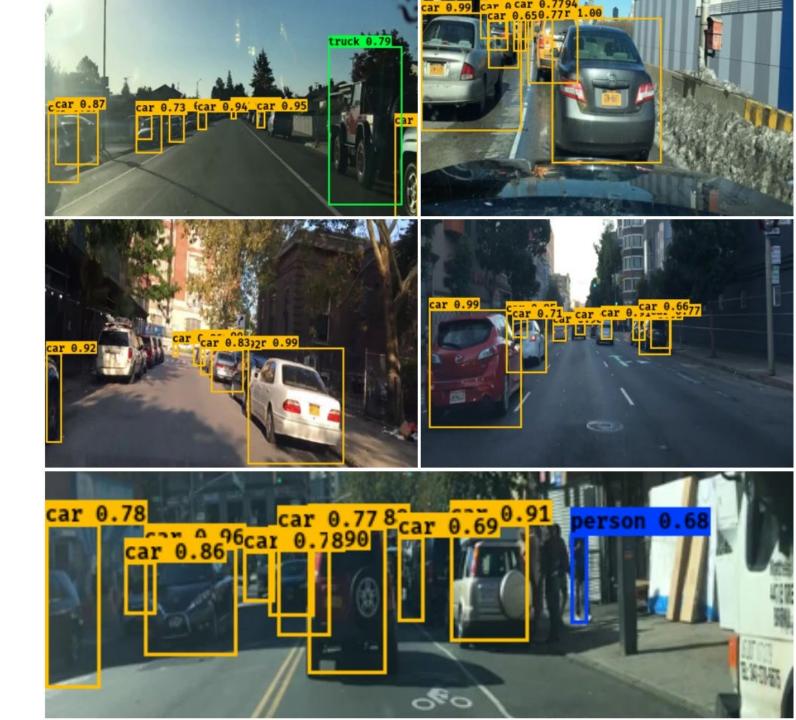


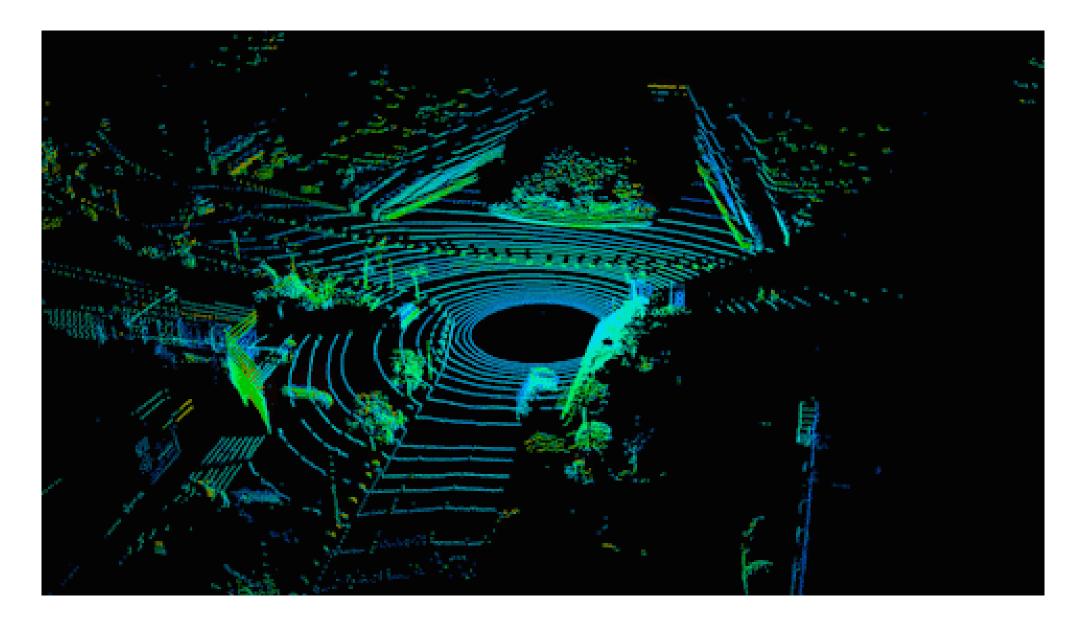
AI is leading the way for the launch of Level 4/5 autonomous vehicles

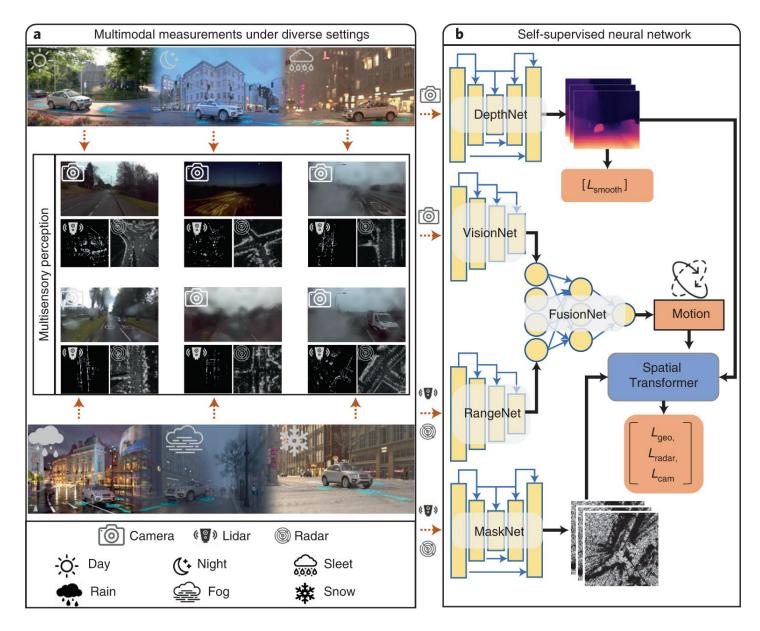
A Typical Autonomous Driving Car today!



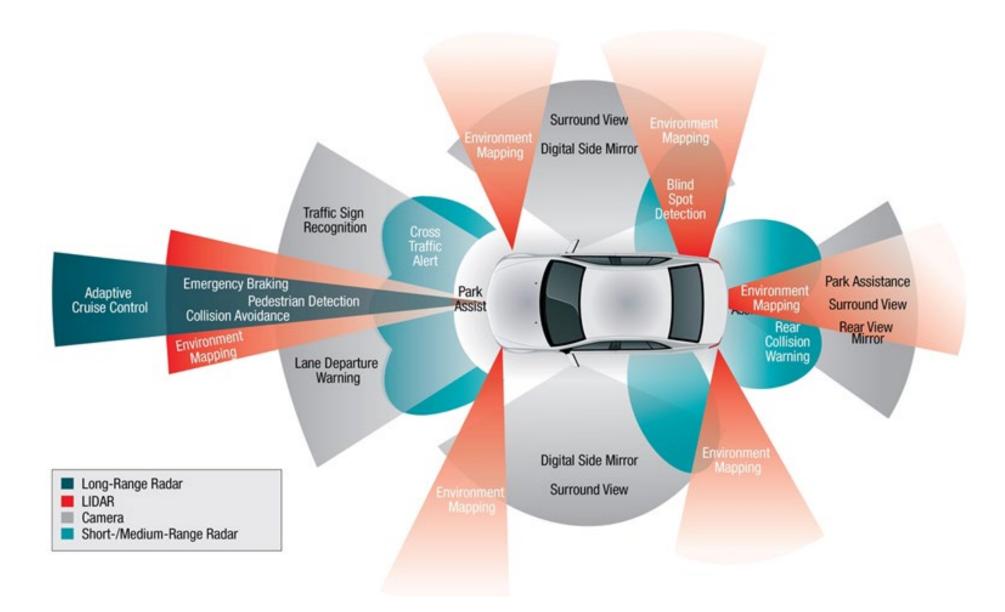
Neural Networks are at the core of their perception system!



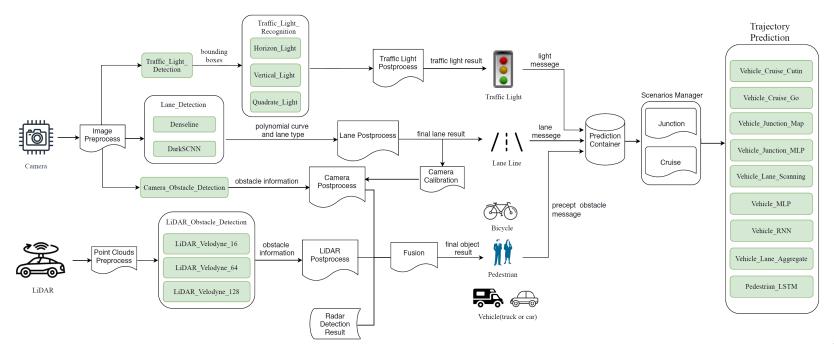


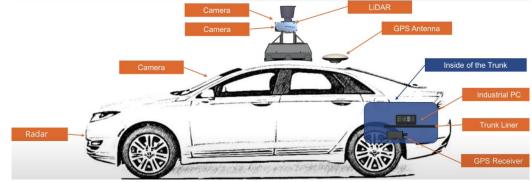


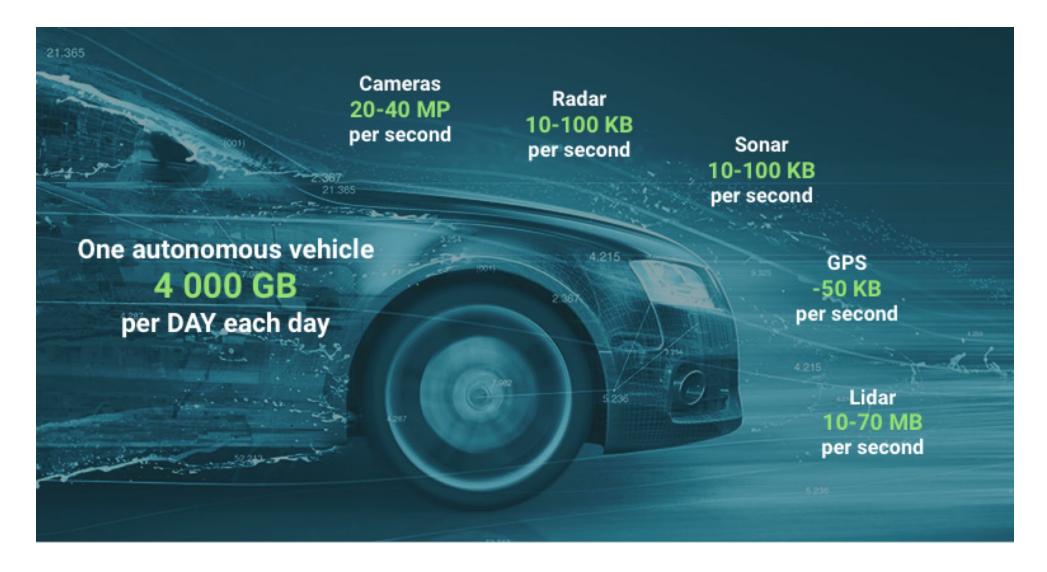
https://www.nature.com/articles/s42256-022-00520-5



The Apollo Autonomous Driving System

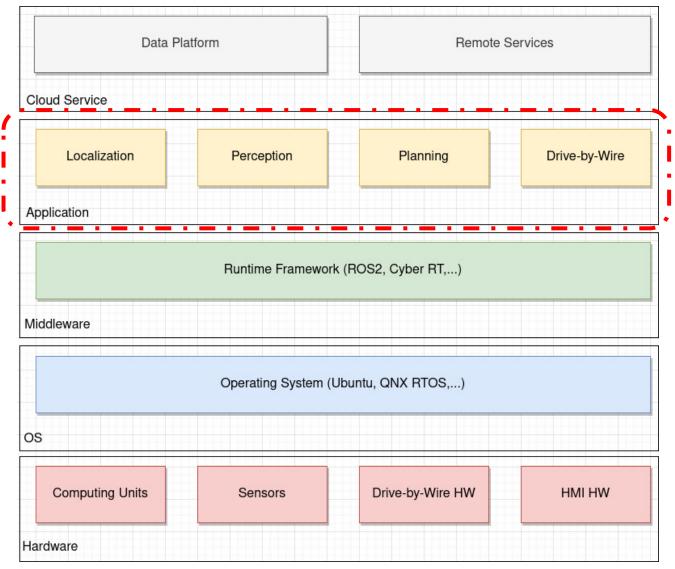






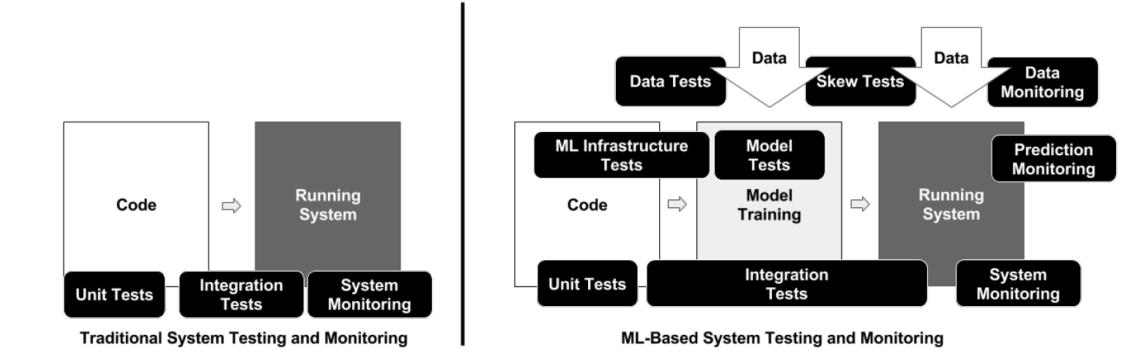
A single autonomous car will produce more data in a year than the roughly 320 million monthly users of Twitter create (<u>Kastrenakes, 2019</u>; <u>Matthews, 2018</u>)

Architecture of an Autonomous Driving system



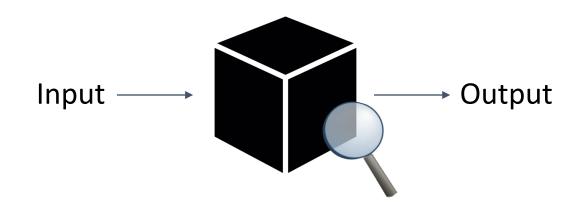
https://channgo2203.github.io/av_software/

Ensuring the safety and auditability of ML-based components is challenging



Ensuring the auditability of ML-based components is challenging because...

 Current state-of-the-art models are hard to interpret (i.e., black box)



Moreover, current popular explanation methods are unfortunately not reliable!

Neither can we fully trust current post-hoc XAI techniques

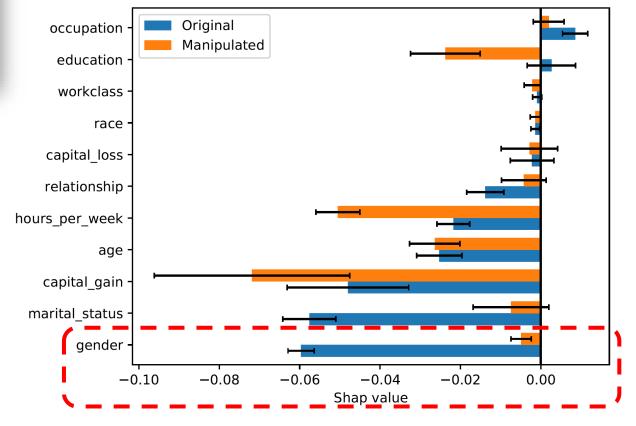
ICSME'22 Why Don't XAI Techniques Agree? Characterizing the Disagreements Between Post-hoc Explanations of Defect Predictions Saumendu Roy Gabriel Laberge Banani Roy University of Saskatchewan, Canada University of Saskatchewan, Canada Polytechnique Montréal, Canada plz937@usask.ca gabriel.laberge@polymtl.ca banani.roy@usask.ca Foutse Khomh Amin Nikanjam Saikat Mondal Polytechnique Montréal, Canada Polytechnique Montréal, Canada University of Saskatchewan, Canada foutse.khomh@polymtl.ca saikat.mondal@usask.ca amin.nikanjam@polyml.ca Local explanation for class Defect Local explanation for class Defect 0.50 < OWN COMMIT <= 1.00 0.50 < OWN_COMMIT <= 1.00 CountClassCoupled <= 1.00 Added_lines > 95.00 RatioCommentToCode > 1.10 4.00 < CountClassCoupled <= 9.0010.00 < AvgLine <= 15.00 AvgLine ≤ 6.00 AvgCyclomatic <= 1.00 0.34 < RatioCommentToCode <= 0.60 22.00 < Added lines <= 95.00 1.00 < AvgCyclomatic <= 2.00 -0.15-0.10-0.05 0.00 0.05 0.10 0.15 0.000 0.025 0.050 0.075 0.100 0.125 0.150 +0.21 +0.17 0.667 = OWN COMMIT 320 = Added_lines 76 =Added lines +0.11 6 = CountClassCoupled +0.090 = CountClassCoupled -0.06 1 = OWN COMMIT -0.06+0.03+0.021 = AvgCyclomatic 0.37 = RatioCommentToCode 4 = AvgLine-0.02 15 = AvgLine+0.021.21 = RatioCommentToCode FU 2 = AvgCyclomatic -0.01 -0.05 0.00 0.05 0.10 0.15 0.20 -0.05 0.00 0.05 0.10 0.15 SHAP value SHAP value **They often disagree!**

Even worse, current post-hoc XAI techniques ...

FOOL SHAP WITH STEALTHILY BIASED SAMPLING.

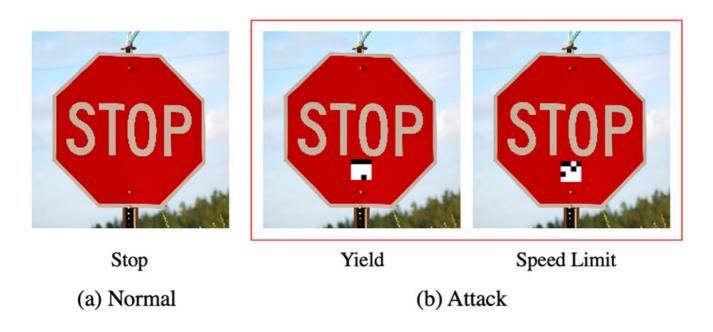
ICLR'23

Gabriel Laberge¹, Ulrich Aïvodji², Satoshi Hara³, Mario Marchand⁴, Foutse Khomh¹ ¹Polytechnique Montréal, Québec ²École de technologie supérieure, Québec ³Osaka University, Japan ⁴Universitié de Laval à Québec {gabriel.laberge, foutse.khomh}@polymtl.ca ulrich.aivodji@etsmtl.ca satohara@ar.sanken.osaka-u.ac.jp mario.marchand@ift.ulaval.ca



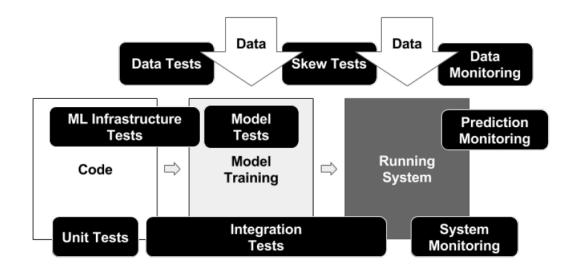
...can be manipulated easily!

ML models are vulnerable to carefully crafted perturbations (adversarial robustness).

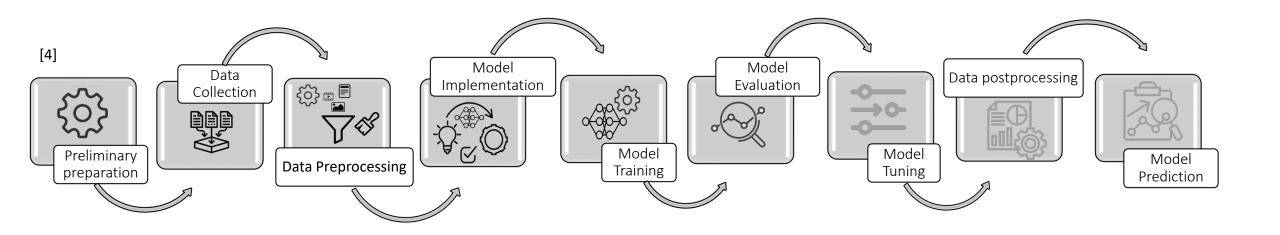


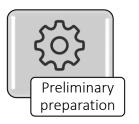
Moreover, they hardly generalize out-of-distribution.

How can we provide safety guarantees that are required to reach Level 4/5?



Extensive testing!

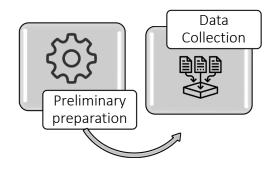


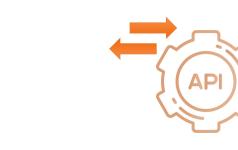


Environment Preparation

Resolve Frameworks/libraries versions

CPU, GPU management



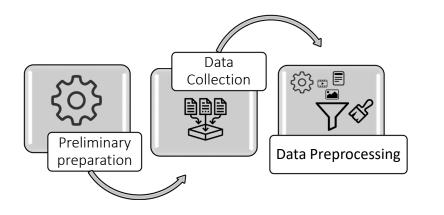


Load File from Disk

CSV

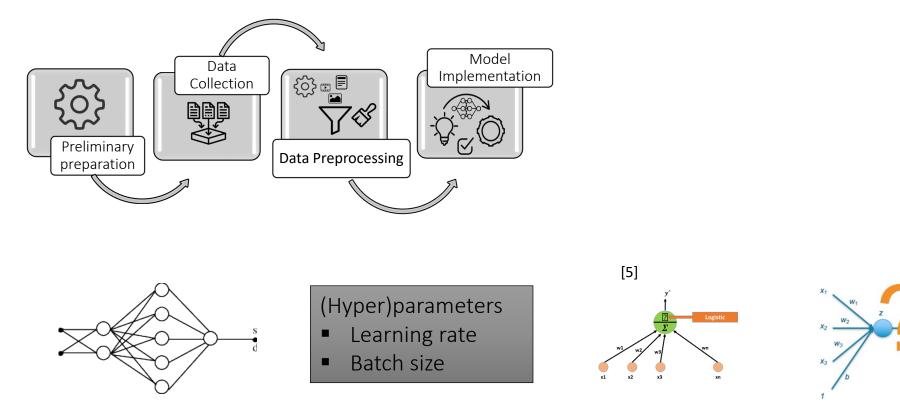
Call REST API

Using Data Collector Functionalities Provided by DL Frameworks



- Format
- Data Type

Labeled Data		
Training	Validation	Test
60 %	20 %	20 %



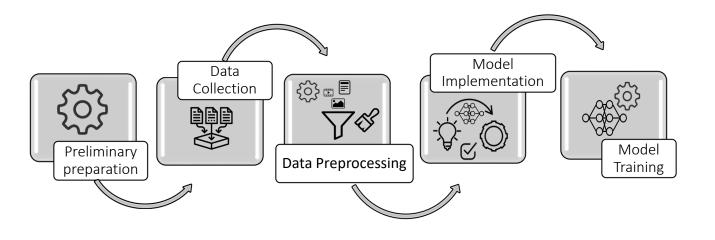
Choice of the architecture (Hyper) parameters Set Up Activation Function Loss Function

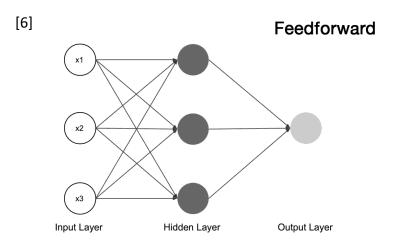
Optimizers

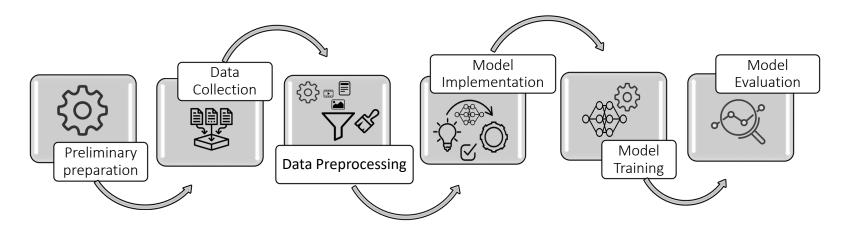
- Adam
- Momentum
- RMSProp

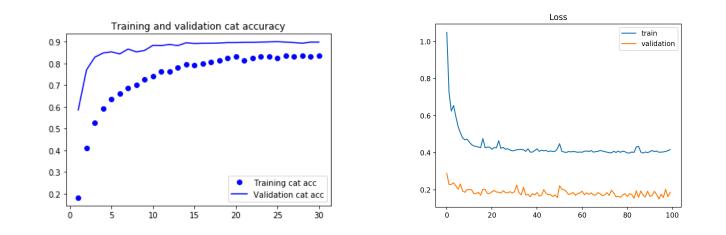
Model Optimizers

[5] vikashraj luhaniwal., Analyzing different types of activation functions in neural networks — which one to prefer?

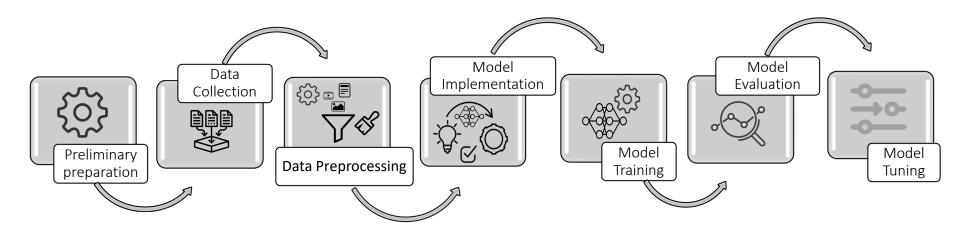


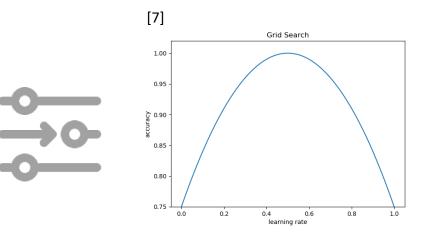


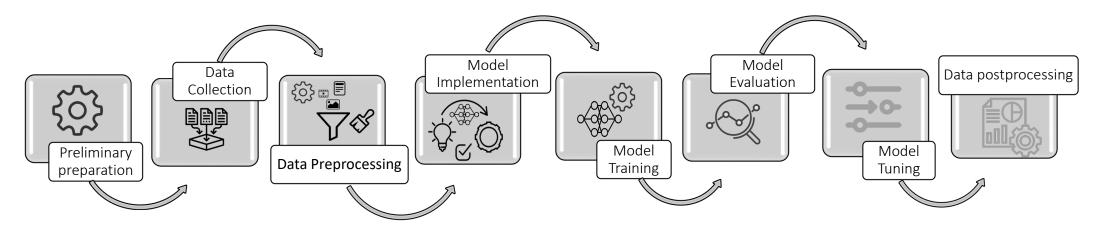


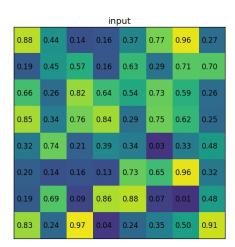


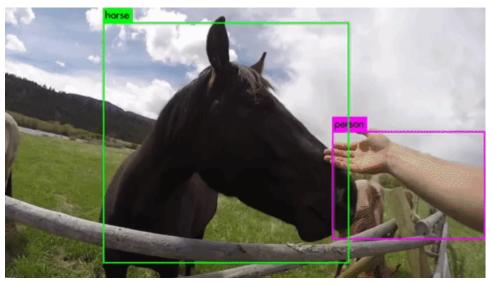
[4]Han et al., What do Programmers Discuss about Deep Learning Frameworks

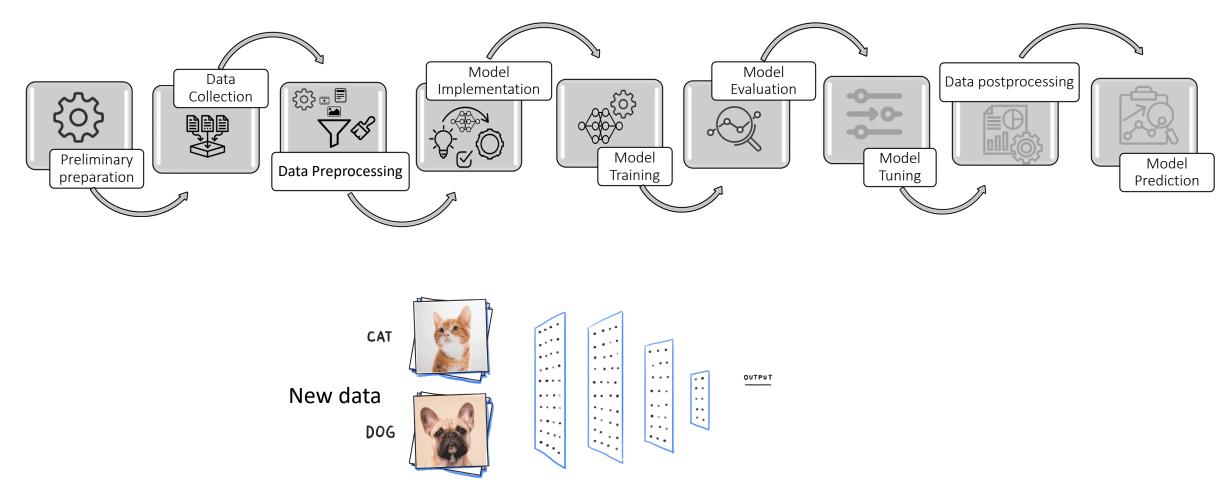






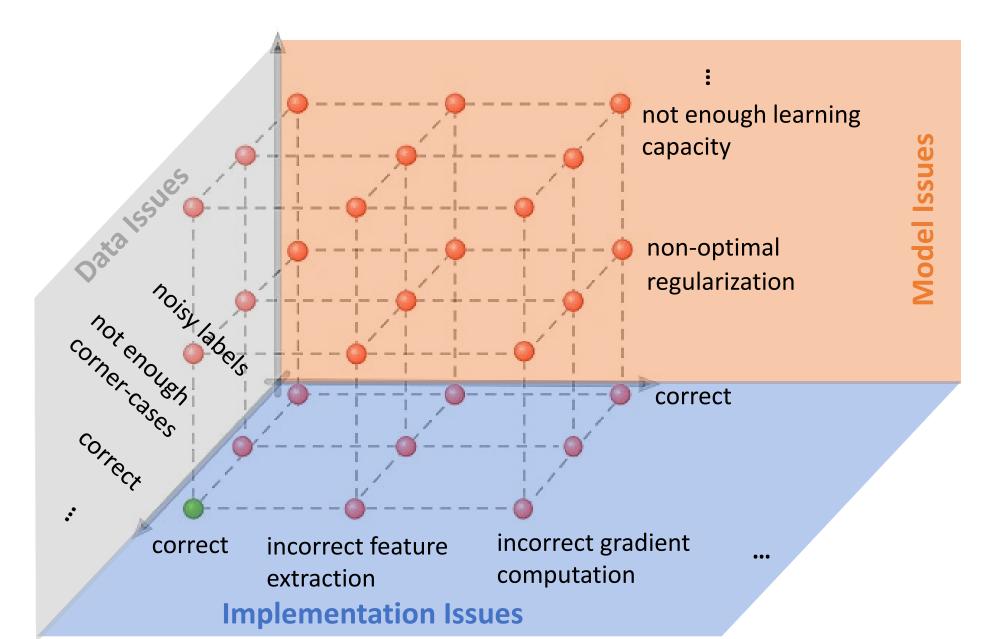






Prediction

Multi-dimensional space of ML faults



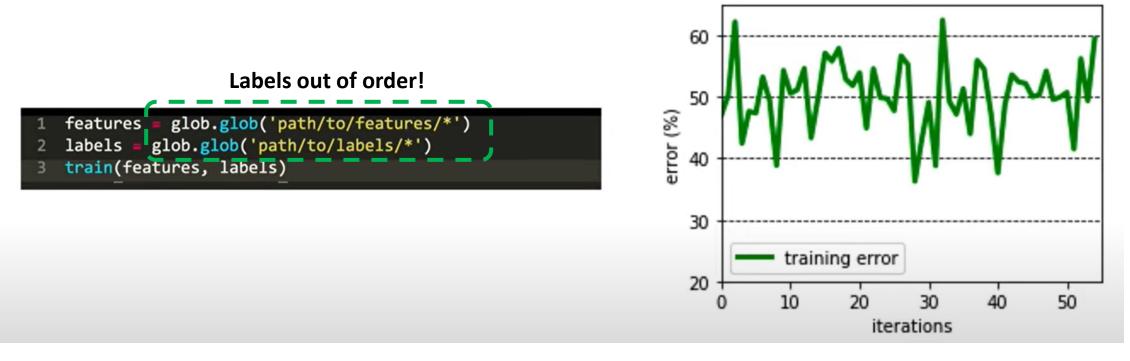
Finding bugs in ML programs is hard

Common sentiment among practitioners

- 80-90% of time is spent debugging and tuning.
- 10-20% is spent on figuring the mathematics and implementing the code for training.

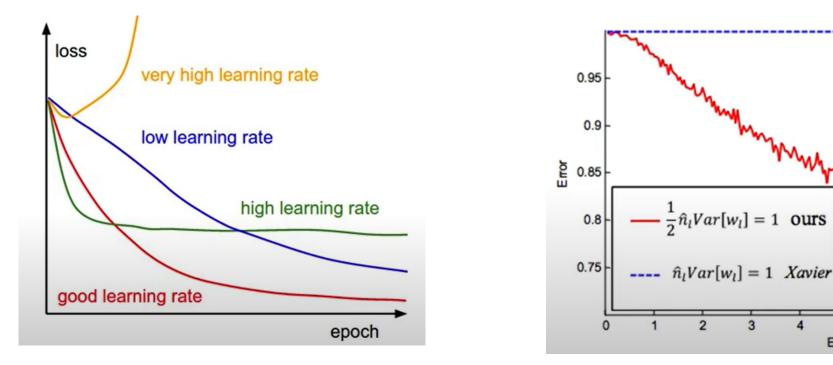
Why is finding bugs in ML programs hard?

Most ML bugs are invisible



Full Stack Deep Learning, UC Berkeley, 2021

Why is finding bugs in ML programs hard?



Andrej Karpathy, CS231n course notes

He, Kaiming et al. "Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification." 2015 IEEE International Conference on Computer Vision (ICCV) (2015): 1026-1034.

5

Epoch

6

Models can be very sensitive to small differences in hyperparameters!

8

Example of Bugs and Design Issues in a CNN

① is a bug:

 Incompatibility between *softmax* as output activation and *binary_crossentropy* as loss function

② and ③ are design issues:

- Decreasing filters count: 224 > 55 > 13
- Decreasing filtering spatial size: (11, 11) > (5, 5) > (3, 3)
- Both represent poor structural choices
- Violating design patterns of effective and optimal CNN architectures
- Leading to bad performance
 - Low accuracy
 - Long training time

```
#train data
data1 = DataFetch('orange', ...)
data1 = DataFetch('apple', ...)
```

compile model


```
#one-hot encode outputs
y_train = np_utils.to_categorical(y_train)
#number of classes is 2: {orange, apple}
number_classes = y_train.shape[1]
#create the model
model = Sequential()
model.add(Conv2D(224) (11, 11), ...))
model.add(Dropout(0.2))
model.add(Conv2D(55, (5, 5), ...))
model.add(Conv2D(13, (3, 3), ...))
model.add(Conv2D(13, (3, 3), ...))
model.add(Dropout(0.5))
...
model.add(Dropout(0.5))
```

model.compile(loss=<mark>'binary_crossentropy'</mark>, optimizer=SGD, ...)

Deep Learning Model Verification Using Graph Transformations

AMIN NIKANJAM^{*}, K. N. Toosi University of Technology, Iran and SWAT Lab., Polytechnique Montreal, Canada

HOUSSEM BEN BRAIEK^{*}, SWAT Lab., Polytechnique Montreal, Canada MOHAMMADMEHDI MOROVATI, SWAT Lab., Polytechnique Montreal, Canada FOUTSE KHOMH, SWAT Lab., Polytechnique Montreal, Canada

NeuraLint : A linter for DL programs

- ✓ Capture defects early, so saves rework cost.
- Less expensive, because it doesn't require execution.
- ✓ Find defects in seconds.

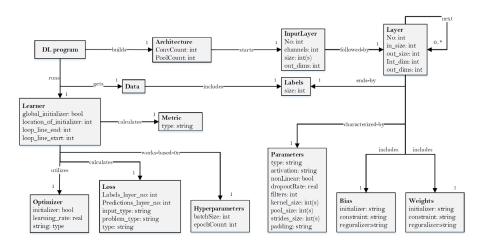
✓ ...

NeuraLint is fast and effective!

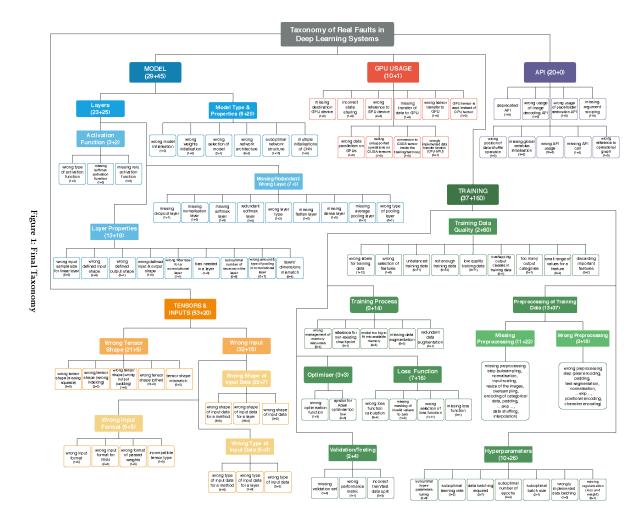
- ✓ It achieves an accuracy of 91.7 %.
- It correctly reported 18 additional bugs that were not found by developers.
- The average execution time of NeuraLint for the studied TensorFlow and Keras based programs are 2.892 and 3.197 seconds, respectively.

NeuraLint has two pillars

A meta-model of DL programs

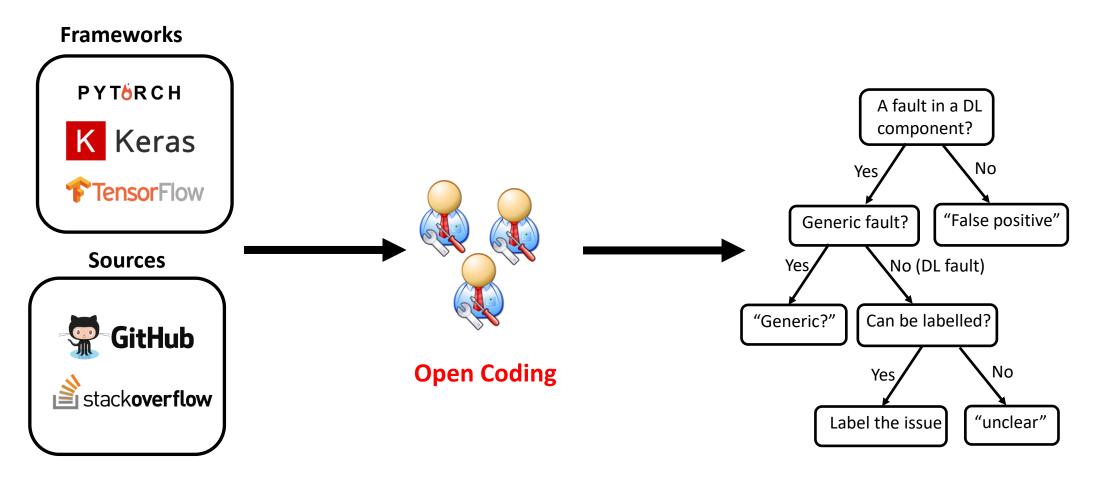


Taxonomy of common DL faults



Gunel Jahangirova, Nargiz Humbatova, Gabriele Bavota, Vincenzo Riccio, Andrea Stocco, and Paolo Tonella. 2019. Taxonomy of Real Faults in Deep Learning Systems. arXiv preprint arXiv:1910.11015

Identification of Common DL Faults



Artifact extraction

23 rules capturing common errors in DL programs (an excerpt)

<u>Reshaped Data Retention</u>

→A reshape layer should preserve the number of data elements. We verify that the product of original tensor dimensions equals to the product of reshaped tensor dimensions.

<u>Unnecessary Activation Removal</u>

→Multiple and redundant connected activations are not allowed. Since all activation functions are designed to transform real values into a restricted interval, successive activations produce erroneous outputs.

Zero Gradients Reset

→The gradients should be re-initialized after each training iteration. This clears old gradients from the last step; otherwise accumulating the gradients hinders the optimization process. Some DL libraries (e.g., Pytorch) delegates this necessary reset step to their users.

Graph transformations for 'Unnecessary Activation Removal'

HG, (LHS, RHS, NAC)

HG: Host graph

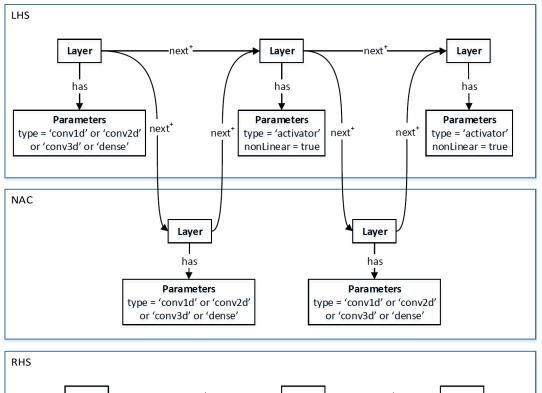
LHS: Precondition of the rule

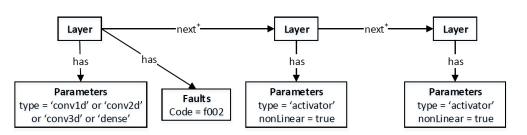
RHS: postcondition of the rule

NAC: Negative Application Condition, i.e., the rule can be applied only when NAC does not exist in the host graph

Application of the rule

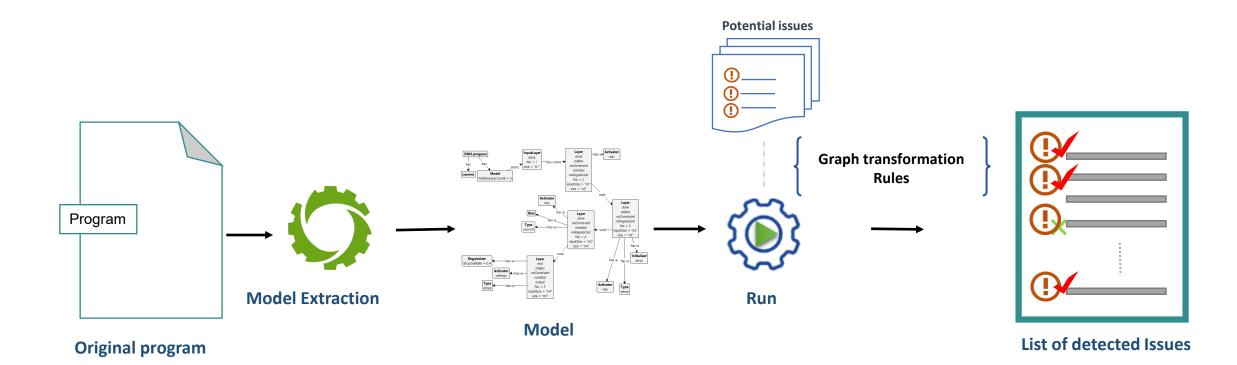
- (1) find a matching of LHS in HG,
- (2) check NAC that forbid the presence of certain nodes and edges,
- (3) remove a part of HG that can be mapped to LHS but not to RHS,
- (4) a specific fault code is added to the node or edge in which the violation occurred.





Graph transformations are very efficient for finding violations of some conditions in a graph

NeuraLint: Execution Flow



NeuraLint: Model-based verification of DL programs

Algorithm 1: *NeuraLint*: Model-based verification of DL programs using graph transformations

Input: A DL program, program, and rules as a graph grammar

Output: List of bugs or warnings to improve the program

 $final \leftarrow graphChecker(graph, rules):$

(1) starting by *graph*, apply enables rules.

(2) apply enabled rules recursively.

(3) terminate when further application of rules becomes impossible.

(4) **return** *final*.

report ← extractReportFromGraph(*final*) **return** *report*

Evaluation of NeuraLint

18 Real-world DL programs with reported bugs

No.	SO #	Symptom	Recommended Fix	<i>NeuraLint</i> : vi- olated rules
1	33969059	Bad Performance	Change the number of units for the output layer	Rules 9, 13
2	34311586	Bad Performance	Remove the last layer activation	Rules 9, 13, 19
3	38584268	Program Crash	Adding a flatten layer	Rules 1, 19, 21
4	44184091	Program Crash	Fix the limit size for input sequence data	Rules 19
5	44322611	Bad Performance	Prune the DNN, use RMSprop instead SGD	Rules 13, 20, 21
6	45120429	Program crash	Change the number of units for the out- put layer, Adding a flatten layer	Rules 1, 13, 19
7	45378493	Incorrect Function- ality	Use a sigmoid for last layer activation	Rules 9, 11, 13 19, 20
8	45711636	Program Crash	Use channels_last format for input data	Rule 2
9	49117607	Program Crash	Reduce spatial size of both Conv. filtering and pooling widows	Rules 2 ,11

✓ In total, **22 out of 24 bugs are detected correctly by NeuraLint (91.7 %)**. Moreover, NeuraLint correctly reported **18 additional bugs** that were not found by developers.

The average execution time of NeuraLint for the studied TensorFlow and Keras based programs are 2.892 and 3.197 seconds respectively, it is therefore quite efficient!

Testing Neural Networks Training Programs

HOUSSEM BEN BRAIEK, SWAT Lab., Polytechnique Montreal, Canada FOUTSE KHOMH, SWAT Lab., Polytechnique Montréal, Canada

TheDeepChecker : Dynamic testing of DL programs

- ✓ Capture defects during the training process.
- ✓ Less expensive than testing the resulting model.
- ✓ Some overhead on the training process.

TheDeepChecker outperforms AWS SMD

TOSEM'22

- DL coding bugs and misconfigurations are detected with (precision, recall), respectively, equal to (90%, 96.4%) and (77%, 83.3%).
- ✓ Finds 30% more defects than AWS SageMaker.

Try it out!

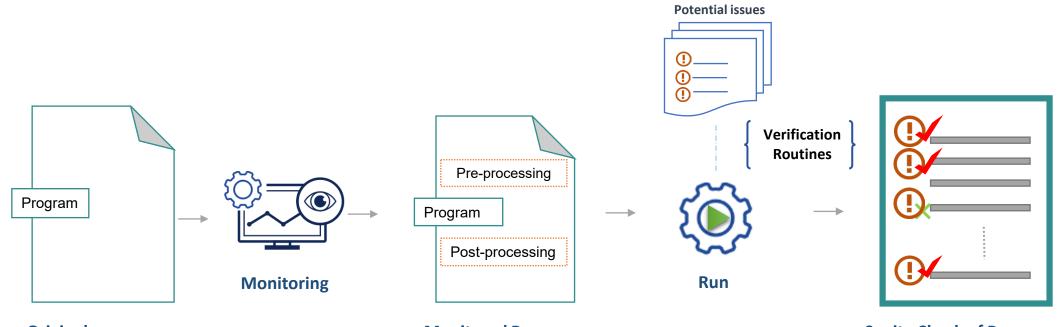
Parameters-related Issues	Untrained Parameters		
	Poor Weight Initialization		
	Parameters' Values Divergence		
	Parameters Unstable Learning		
Activation-related Issues	Activations out of Range		
	Neuron Saturation		
	Dead ReLU		
Optimization-related Issues	Unable to fit a small sample		
	Zero Loss		
	Diverging Loss		
	Slow or Non decreasing Loss		
	Loss Fluctuations		
	Unstable Gradient: Exploding		
	Unstable Gradient: Vanishing		

Parameters-related Issues	Untrained Parameters Poor Weight Initialization Parameters' Values Divergence	Given a layer <i>i</i> and <i>N</i> iterations $W_i^0 = W_i^1, b_i^0 = b_i^1$ $W_i^1 = W_i^2, b_i^1 = b_i^2$ $W_i^{N-1} = W_i^N, b_i^{N-1} = b_i^N$	lssue
	Parameters Unstable Learning	Given a layer <i>i</i> and an iteration <i>j</i> $W_i^{j} \neq W_i^{j+1} b_i^{j} \neq b_i^{j+1}$ $\forall j \in [0, N - 1]$	Verification Routine

Activation-related Issues	Activations out of Range		
		Given a layer i	lssue
	Neuron Saturation	A _i ∉ [min,max]	l
			utine
	Dead ReLU	Given a layer <i>i</i>	n Ro
		$min \le A_i \le max$	Verification Routine

Optimization-related Issues	Unable to fit a small sample		
	Zero Loss		Je
	Diverging Loss	The DNN could not properly	lssue
	Slow or Non decreasing Loss	minimize the loss.	
	Loss Fluctuations		tine
	Unstable Gradient: Exploding	The DNN (with regularization off) should overfit a tiny sample of data.	Verification Routine
	Unstable Gradient: Vanishing		
		Given N iterations	cati
		$loss_N = 0$	erifi
			Š

TheDeepChecker: Execution Flow



Original program

Monitored Program

Sanity Check of Program

TheDeepChecker vs Amazon SageMaker (SMD)

Faults	Base NN	Perf.	SMD Rule(s)	Fired Check(s)	TP	FP	FN
				Uns-Inps ¹ , PI-Loss ²			
	Regr	24.20	-	Un-Fit-Batch ³ , Uns-Act-HS ⁴	1+3	0	0
missing input normalization				Uns-Inps, PI-Loss, Un-Fit-Batch			
	Shallow	11.35%	R_1, R_8, R_{14}	Div-Loss ⁵ , Div-W ⁶ , Div-B ⁷ , Div-Grad ⁸	1+6	0	0
	Deep	85%	R_1, R_8, R_{10}	Uns-Inps, PI-Loss, Uns-Act-HS, NR-Loss ⁹	1+2	1	0
over-scaled outputs	Regr	20.14	R_2, R_{12}	Uns-Outs ¹⁰ , SD-Loss ¹¹ , Dead-ReLU ¹² , Uns-Act-HS	1+3	0	0
	Regr	2.86	-	Uns-Inps, SD-Loss, Uns-Act-LS ¹³ , Un-Fit-Batch	1+3	0	0
redundant input normalization	Shallow	33.75%	R_8, R_{14}	Uns-Inps, SD-Loss, W-Up-Slow ¹⁴ , Uns-Act-LS	1+3	0	0
	Deep	77.5%	$-,R_8,R_{10}$	Uns-Inps, Uns-Act-LS	1+1	0	0
	Regr	1.72e7	-	Un-Fit-Batch, Div-Loss , Uns-Act-HS	1+2	0	0
gradients with flipped sign				Un-Fit-Batch, Div-Loss , Div-W,			
	Shallow	9.8%	R_{11}, R_{14}	Div-B, Uns-Act-HS, Van-Grad ¹⁵	1+5	0	0
	Deep	10%	R_{11}, R_{14}	Un-Fit-Batch, Div-Loss , Uns-Act-HS, NR-Loss ¹⁶	1+2	0	0
				PI-Loss, Inv-Outs ¹⁷ , SD-Loss W-Up-Slow,			
	Shallow	9.8%	R_{14}	Van-Grad, Un-Fit-Batch, Over- Reg-Loss¹⁸	1+5	1	0
missing softmax activation	Deep	11.48%	R_{14}, R_8, R_{10}	PI-Loss, Inv-Outs, Van-Grad	1+2	0	0
softmax out-and in-the loss	Shallow	99.29%	-	SD-Loss, W-Up-Slow(Dense)	0+2	0	1
softmax out-and m-the loss	Deep	83.24%	$-,R_8,R_{10}$	SD-Loss, HF-Loss ¹⁹ , W-Up-Slow(Dense), NR-Loss ²⁰	0+2	1	1
softmax over wrong axis	Shallow	99.45%	R ₁₄	PI-Loss, Inv-Outs , Inv-Out-Dep ²¹ , Inv-Loss-Dep ²²	2+2	0	0
soluliax over wrong axis	Deep	85.86%	R_{14}, R_8, R_{10}	PI-Loss, Inv-Outs, Inv-Out-Dep, Inv-Loss-Dep	2+2	0	0
CE over wrong axis	Shallow	8.92%	R_2, R_7	PI-Loss, Inv-Loss-Dep	2+0	0	0
CE over wrong axis	Deep	86.79%	$-,R_8,R_{10}$	PI-Loss, Inv-Loss-Dep	2+0	0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	0
MSE with wrong broadcasting	Regr	7.02	R_2	Un-Fit-Batch, SD-Loss, Van-Grad		0	1
inverted CE's mean and sum	Shallow	11.34%	<i>R</i> ₁₄	PI-Loss	1+0	0	0
mverteu CE's mean and sum	Deep	87.08%	$-,R_8,R_{10}$	PI-Loss	1+0	0	0
shuffle only the features	Regr	7.27	-	Corrupted Labels	1+0	0	0
shuffe only the reatures	Shallow	11.35%	-	Corrupted Labels	1+0	0	0
	Deep	10.09%	$-,R_8,R_{10}$	Corrupted Labels	1+0	0	0
invalid data transformation	Shallow	99.24%	-	Shifted-Augmented-Data	1+0	0	0
mvanu uata transformation	Deep	86.28%	$-,R_8,R_{10}$	Shifted-Augmented-Data	1+0	0	0

- ✓ DL coding bugs and misconfigurations are detected with (precision, recall), respectively, equal to (90%, 96.4%) and (77%, 83.3%).
- ✓ TheDeepChecker outperforms SMD by detecting 75% rather than 60% of the total of reported bugs.

Testing Neural Networks Training Programs

HOUSSEM BEN BRAIEK, SWAT Lab., Polytechnique Montreal, Canada FOUTSE KHOMH, SWAT Lab., Polytechnique Montréal, Canada

TheDeepChecker : Dynamic testing of DL programs

- ✓ Capture defects during the training process.
- ✓ Less expensive than testing the resulting model.
- ✓ Some overhead on the training process.

TheDeepChecker outperforms AWS SMD

TOSEM'22

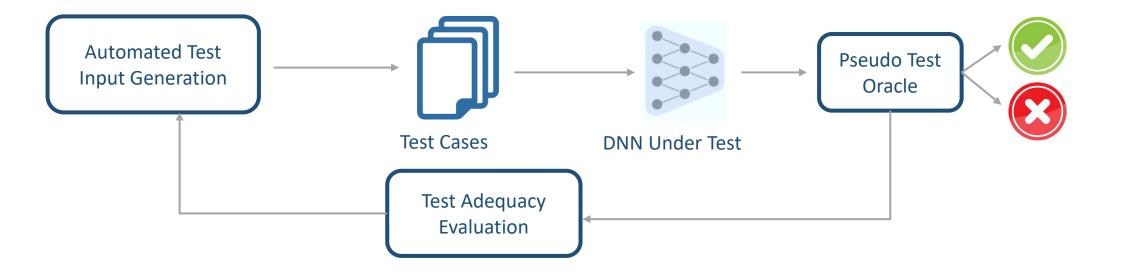
- DL coding bugs and misconfigurations are detected with (precision, recall), respectively, equal to (90%, 96.4%) and (77%, 83.3%).
- ✓ Finds 30% more defects than AWS SageMaker.

Try it out!

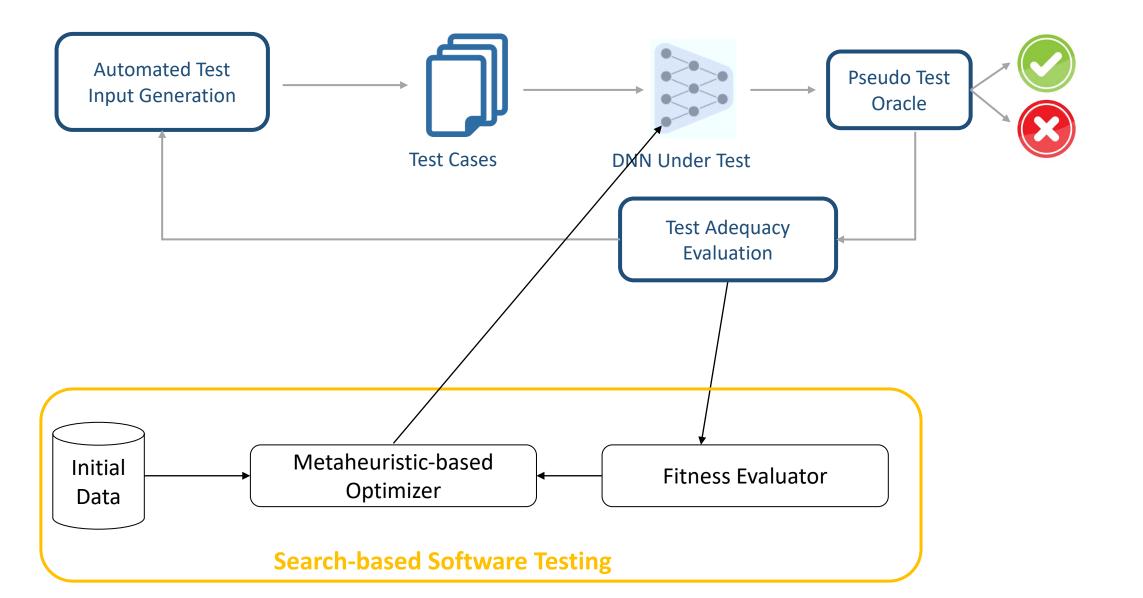
ICSME'19, TOSEM'23

DeepEvolution: A Search-Based Testing Approach for Deep Neural Networks

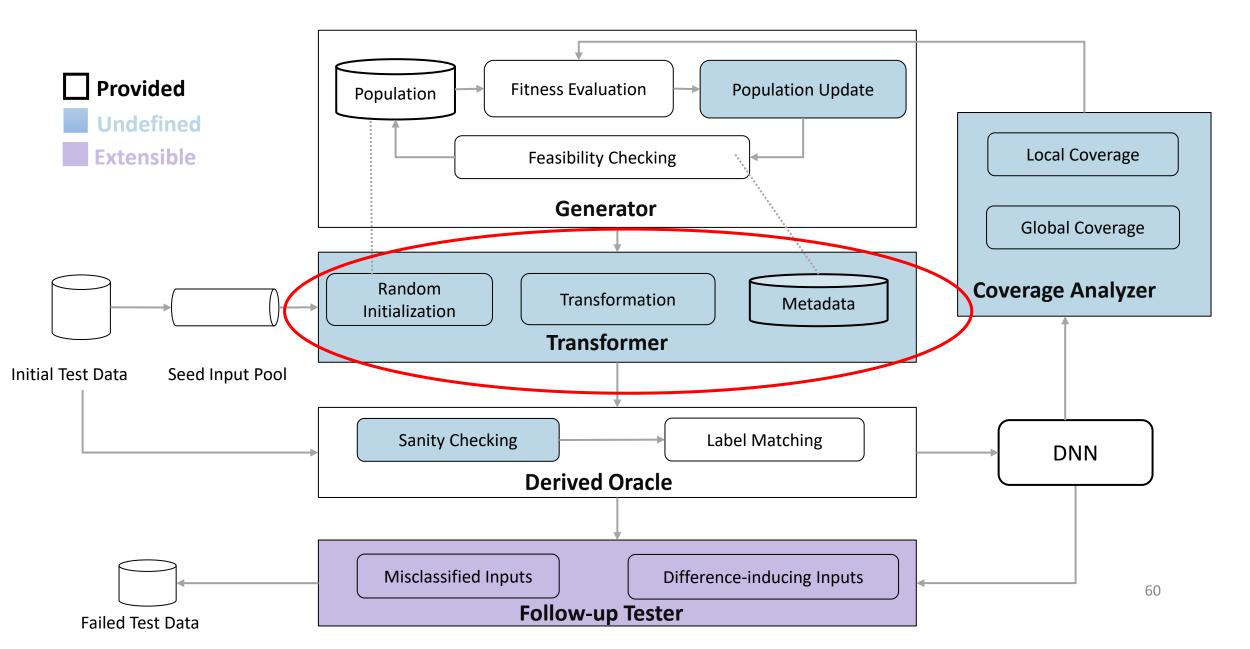
Houssem Ben Braiek and Foutse Khomh SWAT Lab., Polytechnique Montréal, Montréal, Canada {houssem.ben-braiek, foutse.khomh}@polymtl.ca



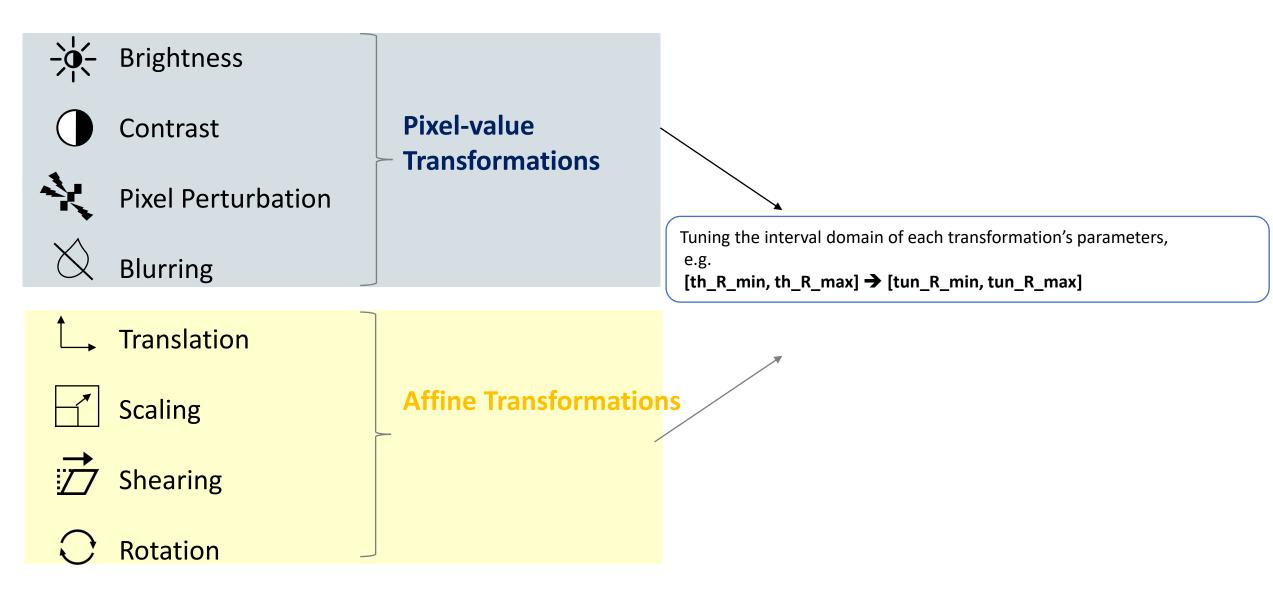
DeepEvolution: Search-based Test Input Generation



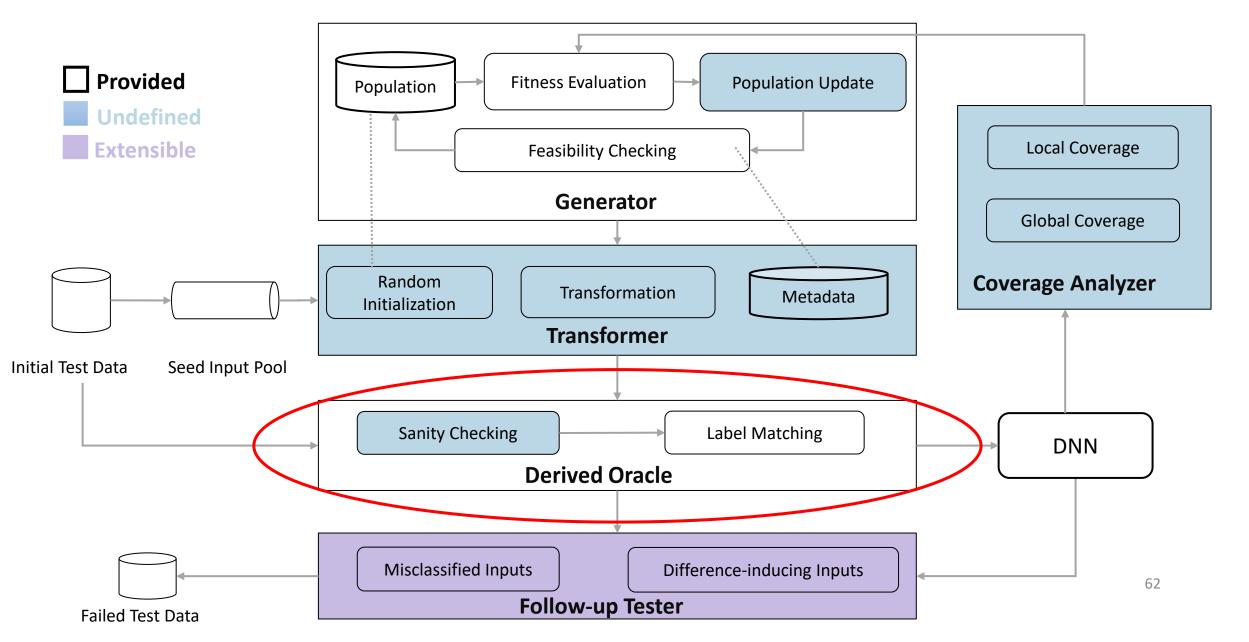
DeepEvolution: DL-based Software Testing Workflow



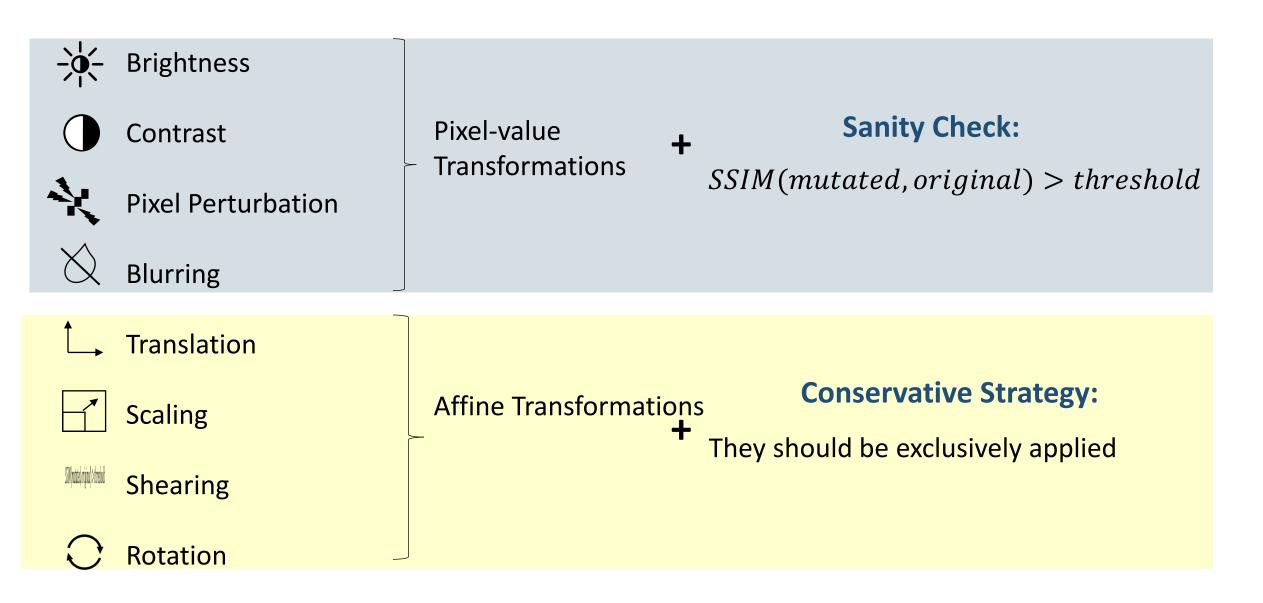
Semantically-Preserving Metamorphic Image Transformation



DeepEvolution: DL-based Software Testing Workflow

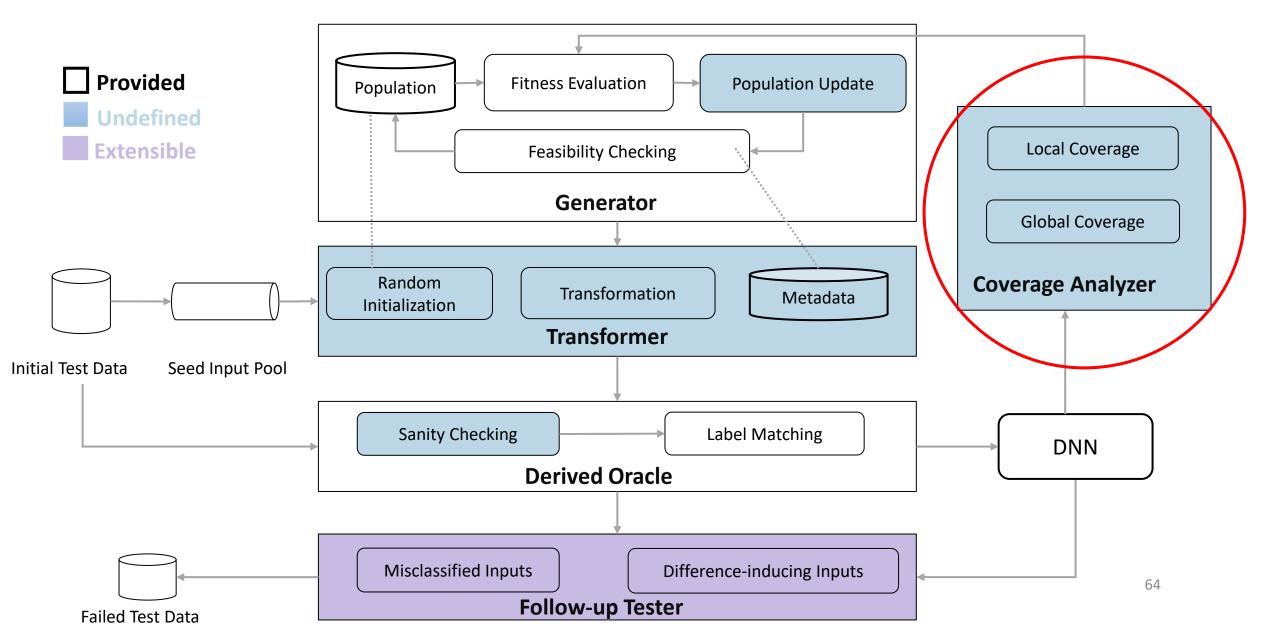


Semantically-Preserving Metamorphic Image Transformation

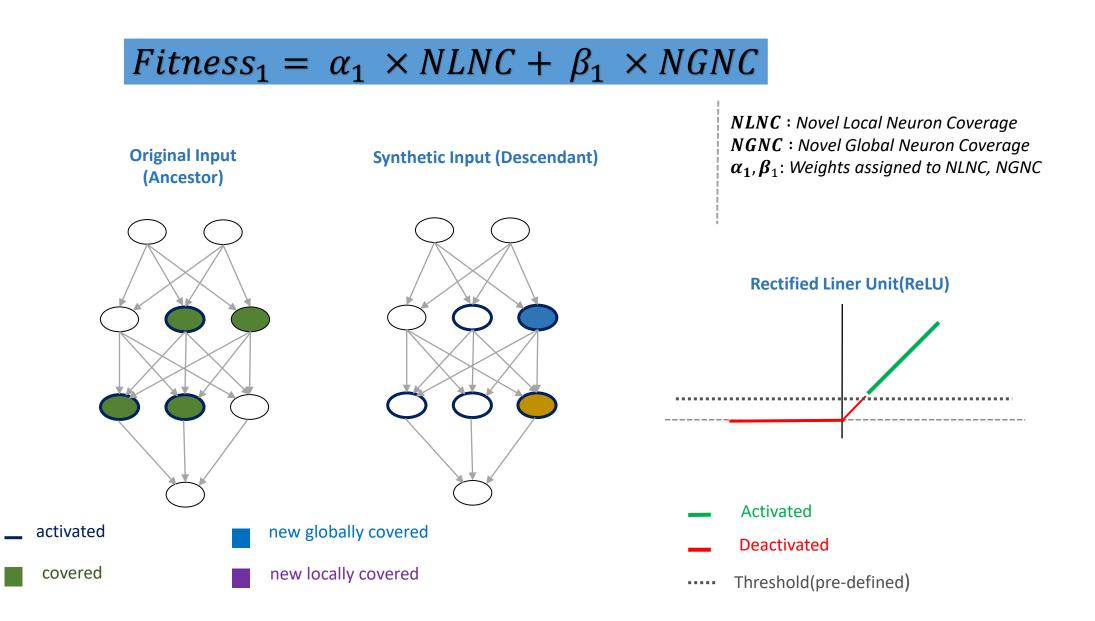


SSIM : Structural Similarity Index Metric

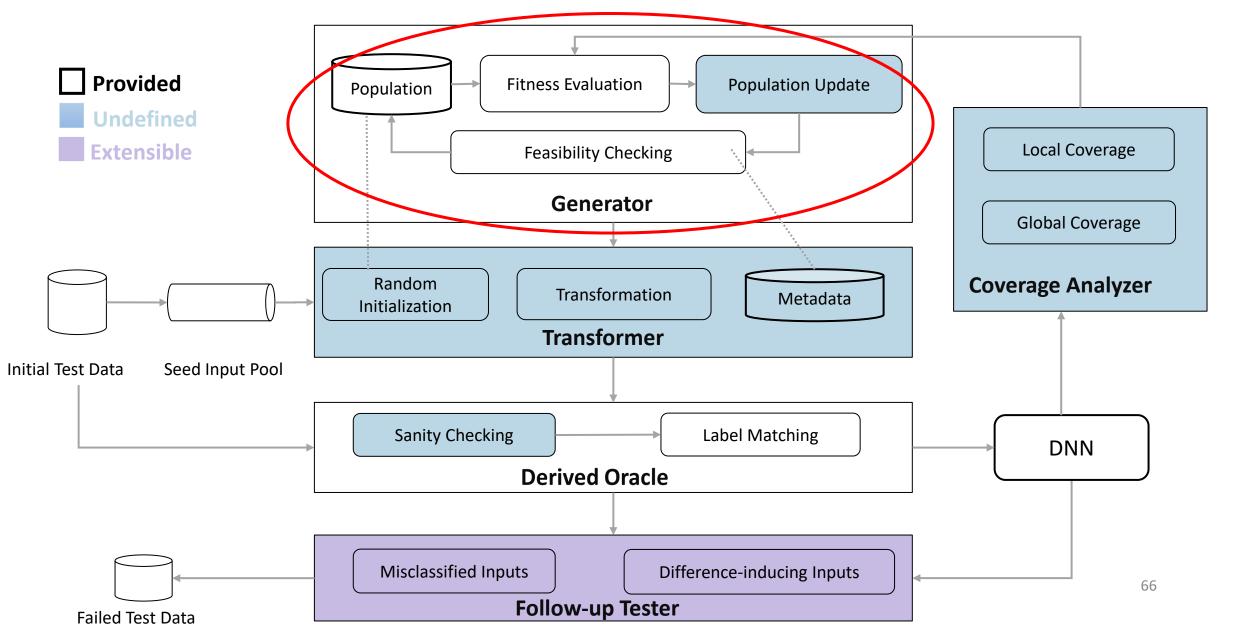
DeepEvolution: DL-based Software Testing Workflow



Neuron Coverage-based Fitness Function

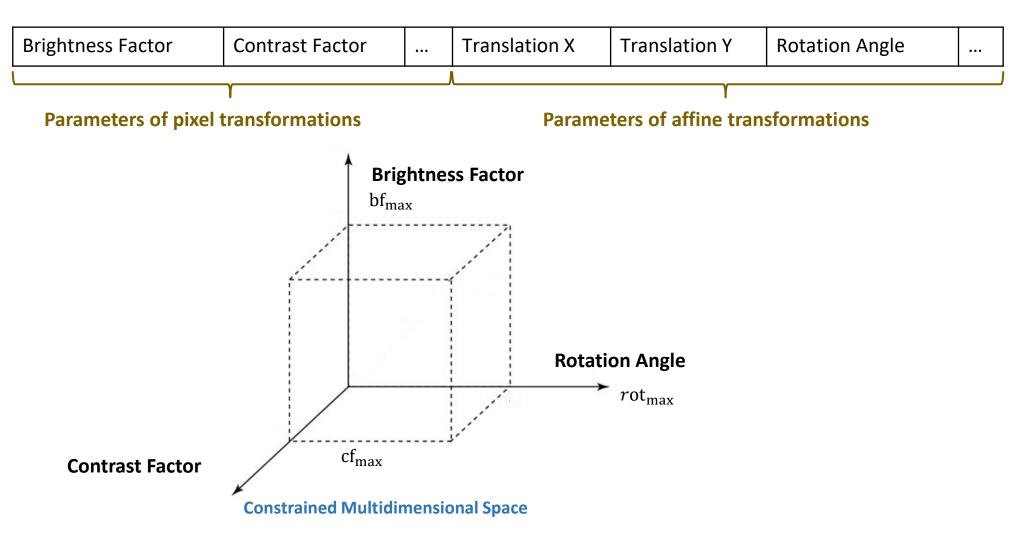


DeepEvolution: DL-based Software Testing Workflow



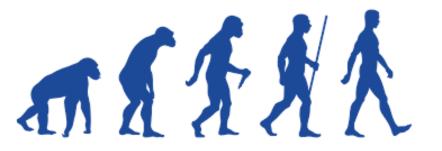
Vectorization of our metamorphic image-based transformations

The vector encoding of the compound metamorphic transformation:



Nature-Inspired Metaheuristic for exploring the transformations' space

Evolution-Based metaheuristics: Genetic Algorithm(GA).



Swarm-Based metaheuristics: PSO, CSA, BAT, GWO, MFO, WOA, MVO, FFA, and SSA.

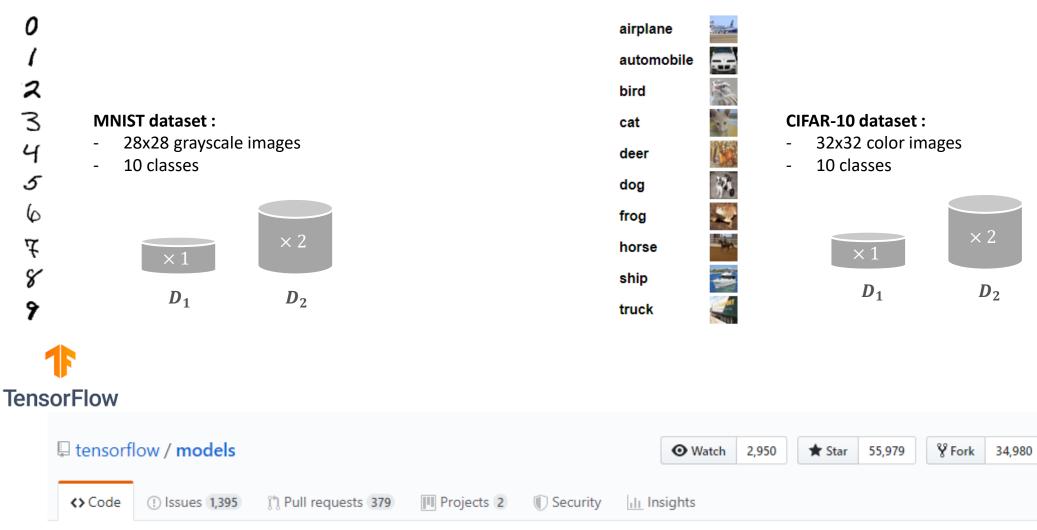
Particle Swarm Opt. (**PSO**); Cuckoo Search Algo. (**CSA**); Bat Algo. (**BAT**);

Gray Wolf Opt. (GWO);

Moth Flame Opt.(**MFO**); Whale Opt. Algo. (**WOA**);

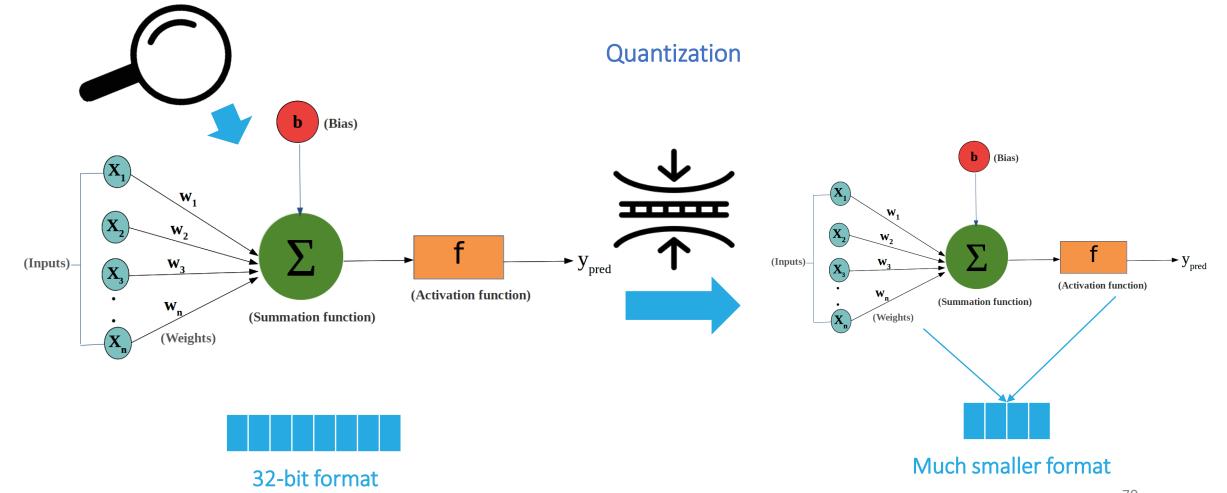
Multi-Verse Opt. (**MVO**); Firefly Algo. (**FFA**); Salp Swarm Algo. (SSA)

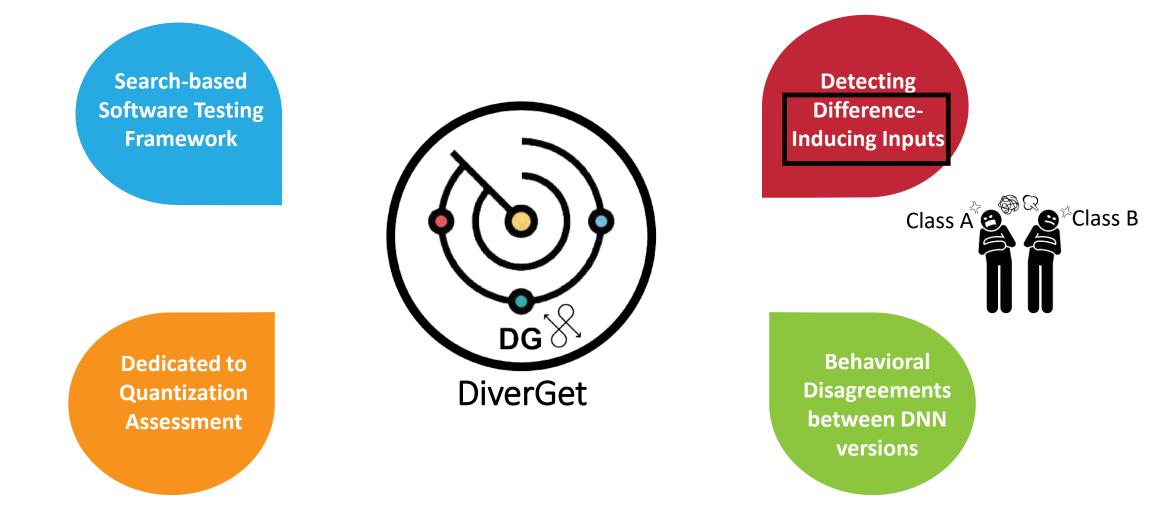
DeepEvolution outperformed TensorFuzz in finding defects introduced during model quantization!

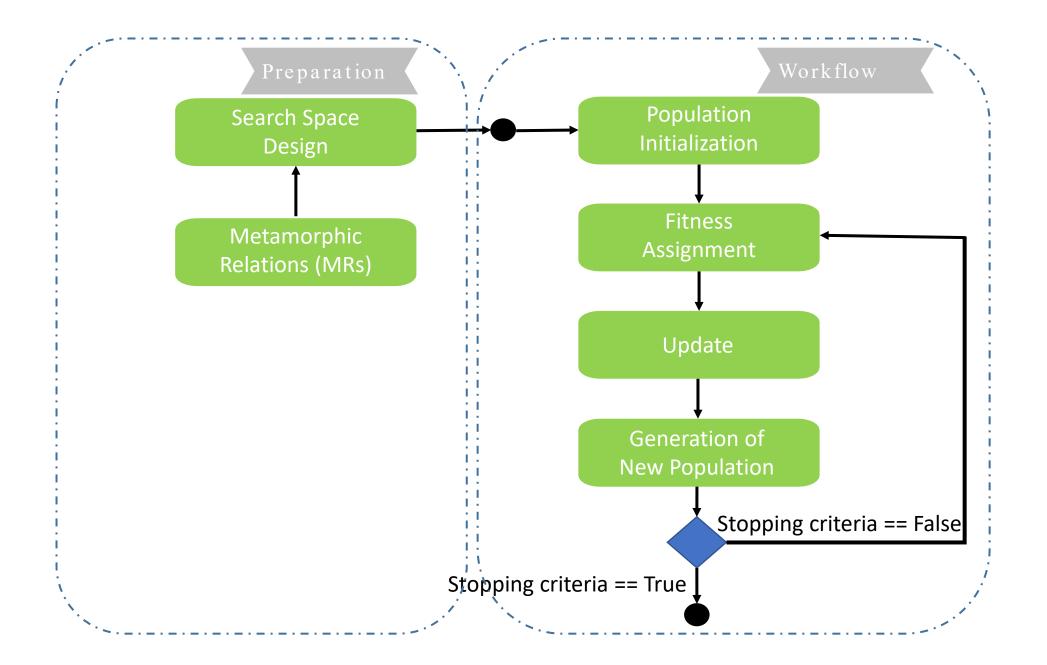


DiverGet: a search-based software testing approach for Deep Neural Network quantization assessment

Ahmed Haj Yahmed¹ · Houssem Ben Braiek¹ · Foutse Khomh¹ · Sonia Bouzidi² Rania Zaatour³ **EMSE'22**







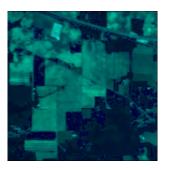
MRs: Metamorphic Relation Formulation

 $(m_o(T_r(X_i)) = m_q(T_r(X_i))) \land (m_o(X_i) = y_i), \quad \forall i \in \{1 ... N\}$

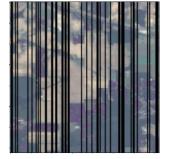
 $\left\{ \begin{array}{ll} m_o: \text{Original Model} \\ m_q: \text{Quantized Model} \\ T_r: \text{Naturally-Occurring Distortion} \\ (X_i, y_i): \text{Data point and its Ground Truth} \end{array} \right.$

MRs: Naturally-Occurring Radiometric Distortions

Original Image

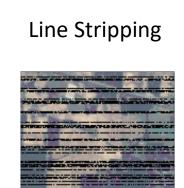


Spectral Band Loss



Continuous Column Dropout

Region Dropout



Discontinuous Line Dropout

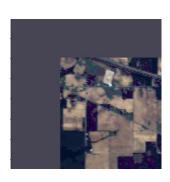
Column Stripping

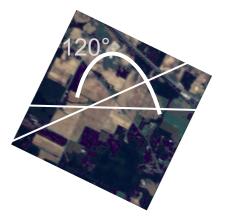
Discontinuous Column Dropout

Continuous Line Dropout

Salt and Pepper Noise

MRs: Naturally-Occurring Geometric Distortions





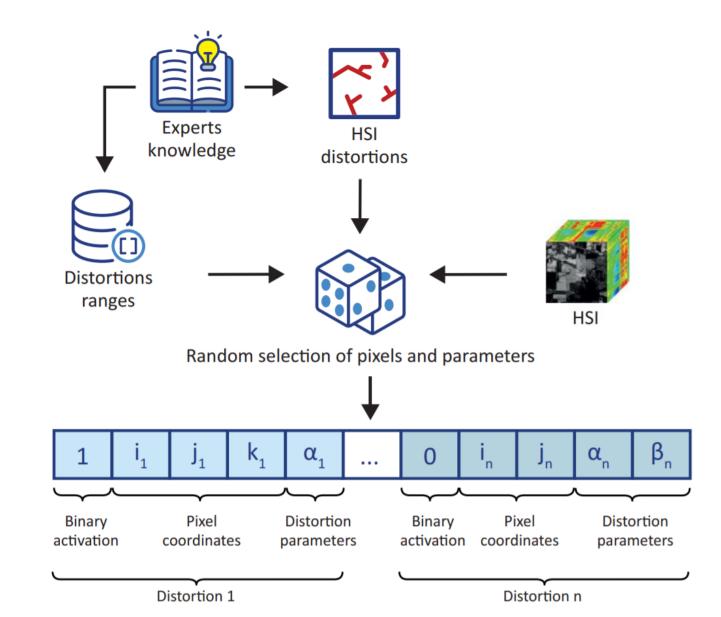
Original Image

Zoom In

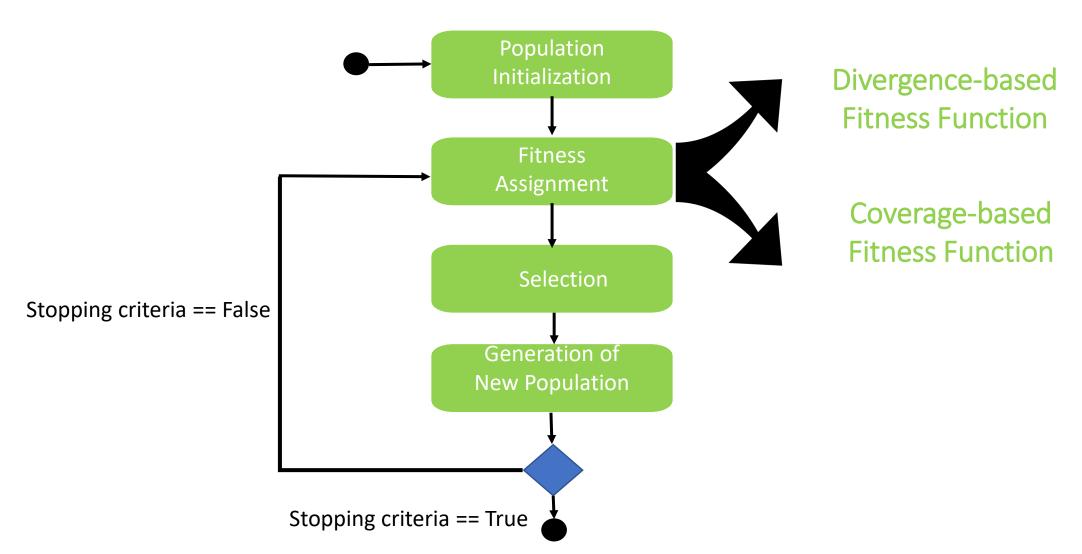
Zoom Out

Rotation

Vectorization of our metamorphic image-based transformations



Fitness Function Design



Fitness Function Design

Divergence-based Fitness Function

$$f_X^{div}(\hat{x}) = J(\boldsymbol{s}_o(\hat{x}), \boldsymbol{s}_q(\hat{x}))$$

$$\begin{split} J(Q||R) &= \frac{1}{2} (D(Q||M) + D(R||M)) \\ where \ D(Q||R) &= \sum_{i=1}^{c} Q(i) \ln(\frac{Q(i)}{R(i)}) \\ and \ M &= \frac{1}{2} (Q+R). \\ s_i &= \sigma(l_i) = \frac{e^{s_i}}{\sum_{j=1}^{c} e^{l_j}} \ for \ i = 1, ..., c \end{split}$$

Coverage-based Fitness Function

$$f_X^{cov}(\hat{x}) = -J(S_o^{\hat{x}}, S_q^{\hat{x}})$$

$$J(S_o^x, S_q^x) = \frac{|S_o^x \cap S_q^x|}{|S_o^x| + |S_q^x| + |S_o^x \cap S_q^x|}$$

$$S^x = \{S^{n_m}_i | \phi(\mathbf{x}, n) \in S^n_i\}, \quad \forall m \in [1, M]\}$$

where e^x is the exponential function

Evaluation of DiverGet

 RQ1: How effective is DiverGet's main feature (i.e., the domain-specific metamorphic relations and the search-based data transformation) at finding difference-inducing inputs?

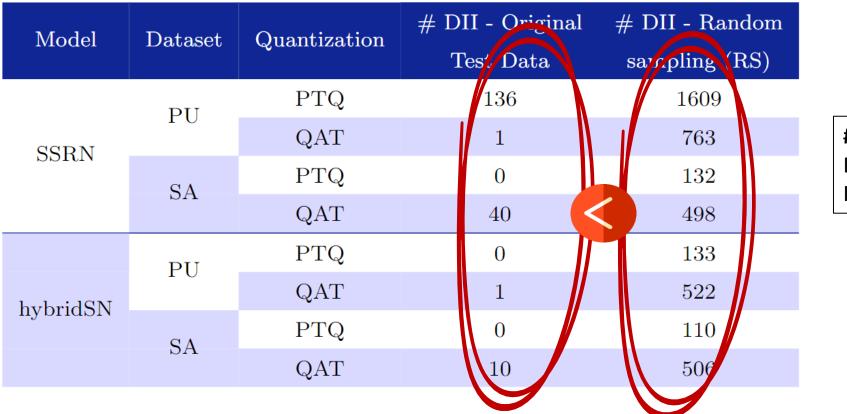
• RQ2: How does DiverGet compare to DiffChaser?

Evaluation Subjects

Dataset	Models	Metaheuristics	Quantization methods
Pavia University (PU)	Spectral-Spatial Residual Network (SSRN)	Particle Swarm Optimization (PSO)	Post Training Quantization (PTQ)
Salinas (SA)	Hybrid Spectral Neural Network (HybridSN)	Genetic Algorithm (GA)	Quantization Aware Training (QAT)
			TensorFlow Lite

RQ1: The effectiveness of DiverGet as a novel quantization assessment framework

Naturally-occurring synthetic inputs **vs** original test inputs:



DII: number of Difference-Inducing Inputs

Finding 1: the designed domain-specific metamorphic relations expose uncovered divergences caused by quantization that original test data failed to highlight.

RQ1: The effectiveness of DiverGet as a novel quantization assessment framework

Population-based metaheuristic algorithms vs Random Sampling

Detect	Quantization	RS		DiverCot	
Dataset	Quantization	DiR	VR	J /R	VI
PU	PTQ	1.07	3.75	24.05	75.82
	QAT	0.48	3.89	15.68	70.28
SA	PTQ	0.03	3.38	5.05	70.43
	QAT	0.33	3.45	18.27	70.72
PU	PTQ	0.08	3.66	8.43	67.77
10	QAT	0.43	3.84	10.92	67.51
SA	PTQ	0.02	2	3.07	67.16
	QAT	9.25	2.85	3.96	65.18
	SA PU	PU PTQ QAT APTQ PTQ QAT QAT PU PTQ QAT QAT APTQ	DatasetQuantizationDiRPUPTQ1.07PUQAT0.48APTQ0.03QAT0.030.03PUPTQ0.08PUQAT0.43SAPTQ0.02	DatasetQuantizationDiRVRPUPTQ1.073.75QAT0.483.89APTQ0.033.38QAT0.333.45PUPTQ0.083.66PUQAT0.433.84APTQ0.022	DatasetQuantizationDiRVRDiR PU PTQ1.073.7524.05 PU QAT0.483.8915.68 A PTQ0.033.395.05 A QAT0.333.4518.27 PU PTQ0.083.668.43 PU QAT0.433.8410.92 A PTQ0.0223.07

DiR: Divergence Rate **VR:** Validation Rate

Finding 2: DiverGet's searching strategy using population-based metaheuristic succeed in outperforming the Random Sampling strategy into steering the generation into prominent regions.

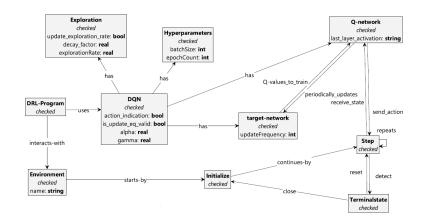
RQ2: DiverGet vs. DiffChaser

		PU			SA			Average			
Framework	Model	\mathbf{PT}	Q	QA	T	\mathbf{PT}	Q	QA	Т		age
		DiR	SR	DiR	SR	DiR	\mathbf{SR}	DiR	\mathbf{SR}	DiR	\mathbf{SR}
	SSRN	16.66	49.38	0.31	10.63	0.35	9.69	3.68	16.58		
DiffChaser	Hybrid -SN	0.001	0.31	0.002	0.31	0.001	0.63	1.22	2.50	2.78	11.25
DiverGet	SSRN	24.96	71.25	16.42	61.25	3.60	43.75	13.92	63.44		
(PSO)	Hybrid -SN	16.97	24.38	20.08 (**)	28.75	9.35	14.06	11.42	20.94 (*)	14.59	40.98
DiverGet	SSRN	35.90	58.75	28.86	37.50	14.47	20.63	31.93	43.75		
(GA)	Hybrid -SN	12.06	13.75	19.22 (**)	20.94	5.32	5.63	15.40	17.19 (*)	20.40	27.27

DiverGet outperforms DiffChaser in terms of number of revealed disagreements with a higher success rate!

Faults in Deep Reinforcement Learning Programs: A Taxonomy and A Detection Approach

Amin Nikanjam \cdot Mohammad Mehdi
 Morovati \cdot Foutse Khomh \cdot Houssem B
en Braiek



A probabilistic framework for mutation testing in deep neural networks Florian Tambon *, Foutse Khomh, Giuliano Antoniol Department of Software Engineering - Polytechnique Montreal, 2500, chemin de Polytechnique, Montreal, H3T1J4, Quebec, Canada

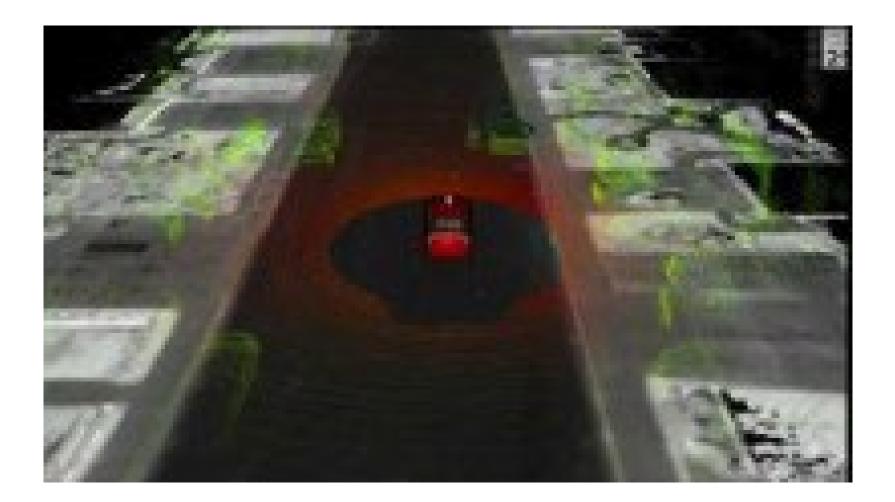
> Mutation Testing of Deep Reinforcement Learning Based on Real Faults

Automated Quality Assurance Tools are essential!

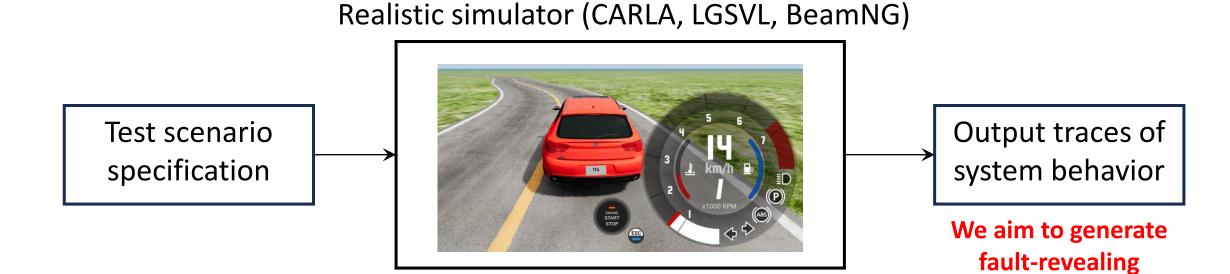
Adversarial weather conditions

Relation in the Walter

Complex corner cases



Software in the loop testing!



Challenges:

- Vast search space
- Evaluating test scenarios is expensive
- The need for diverse test scenarios

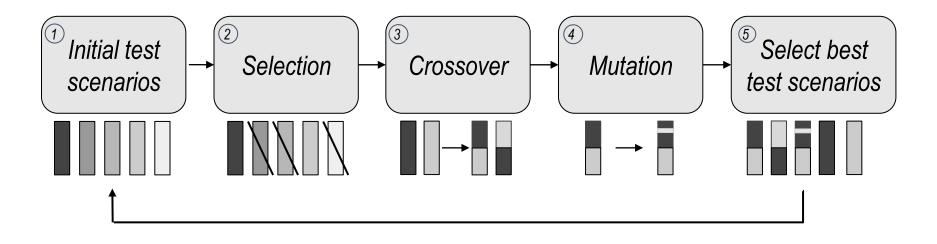
scenarios!

AmbieGen: A Search-based Framework for Autonomous Systems Testing

Dmytro Humeniuk, Foutse Khomh, Giuliano Antoniol

Multi-objective search algorithm (NSGA-II) with 2 objectives:

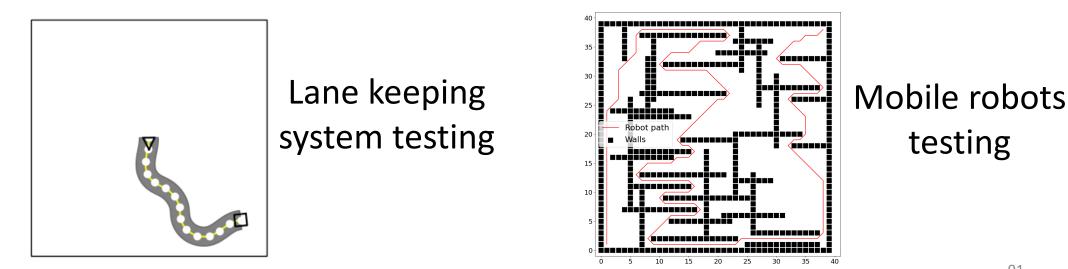
- Maximize the difficulty of test scenarios, respecting the constraints
- Maximize the diversity of test scenarios



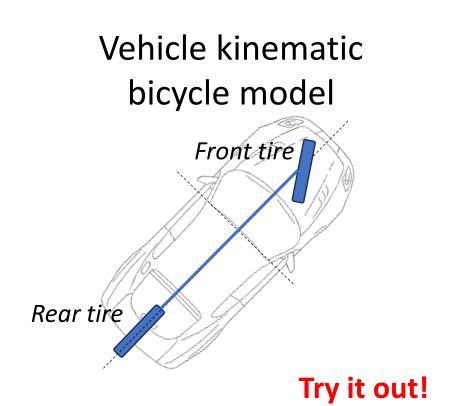
IST'21

Flexible representation, applicable to different test problems

	Element 1	Element 2	Element N
Element type	Straight segment	Curved segment	Curved segment
Parameter 1	Segment length 10		
Parameter 2		Turning angle 60	Turning angle 30



Using a simplified model of the system to guide the search



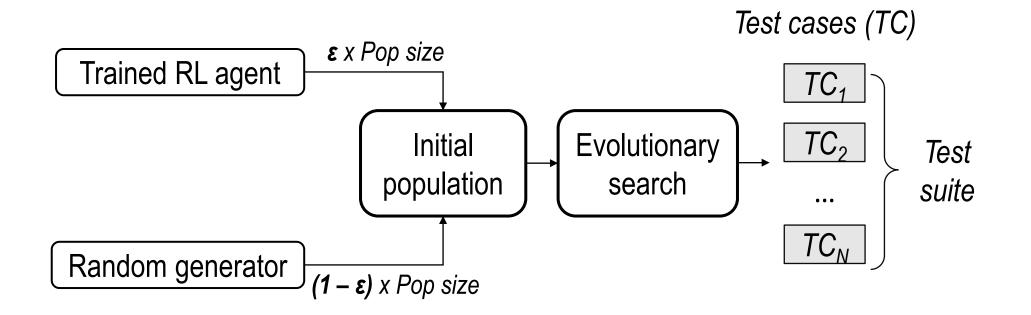
Quite effective, achieving the 1st place in SBST 2022 competition

TOOL	BEAMNG.AI	DAVE2
ADAFRENETIC	0.183	0.044
AMBIEGEN	0.544	0.333
FRENETICV	0.447	Q 0.302
GENRL	0.237	0.211
EVOMBT	0.216	0.200
WOGAN	Q 0.514	0.262

Reinforcement learning informed evolutionary search for autonomous system testing

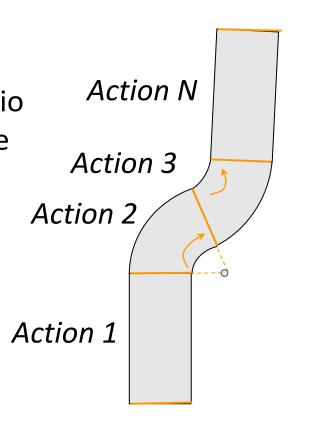
DMYTRO HUMENIUK, Polytechnique Montréal, Canada FOUTSE KHOMH, Polytechnique Montréal, Canada GIULIANO ANTONIOL, Polytechnique Montréal, Canada **TOSEM'23**

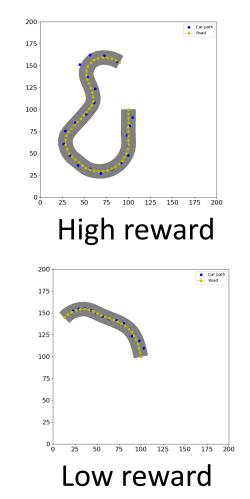
Using gradient based algorithms for smart initialization



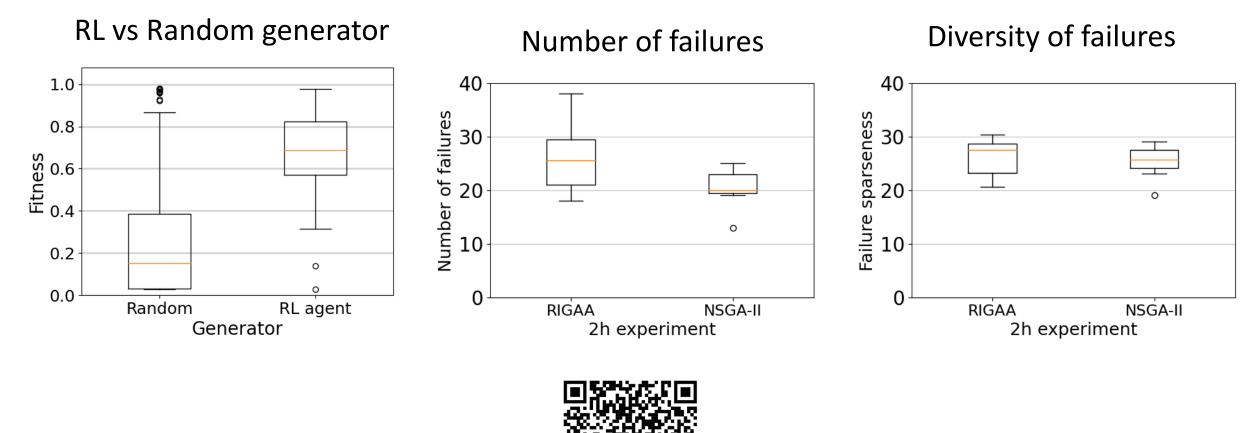
Training the RL agent to generate challenging scenarios with domain knowledge-based rewards

- State: 2D array defining the test scenario
- Actions: new element to add to the scenario
- Reward: using simplified model to estimate the reward
- PPO algorithm

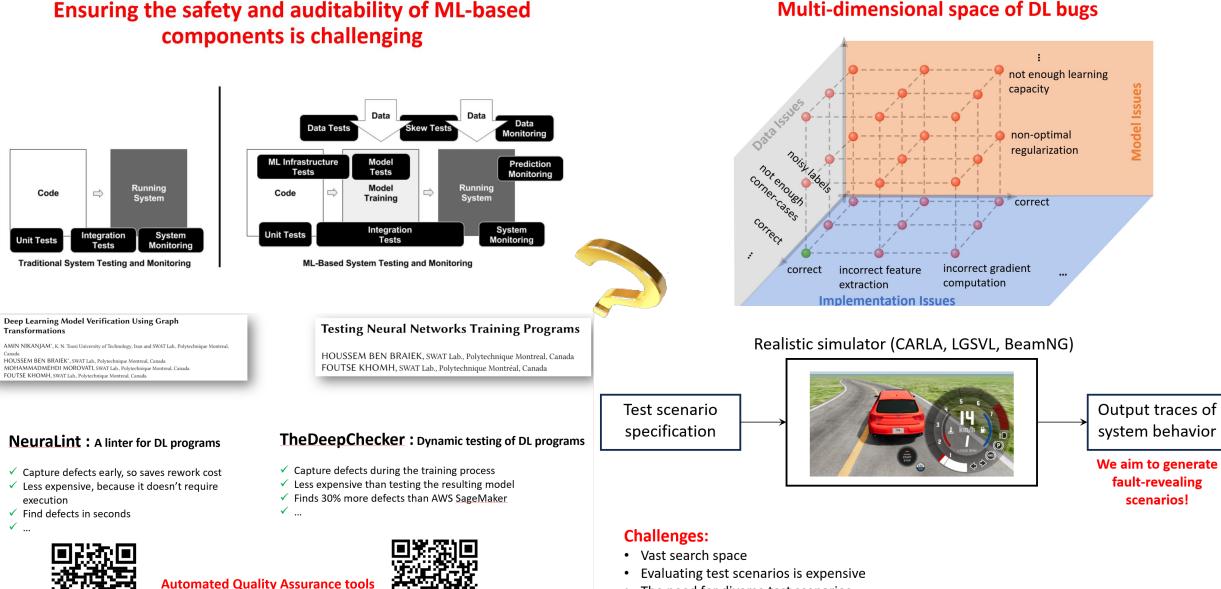




RIGAA outperforms MOEA with random initialization



Try it out!



are needed!

• The need for diverse test scenarios