
Engineering Trustworthy AI Systems

SoftWare Analytics
and Technologies Lab

S.W.A.T

Foutse Khomh, PhD, Ing.
foutse.khomh@polymtl.ca

@SWATLab
Canada CIFAR AI Chair on Trustworthy Machine Learning Systems

FRQ-IVADO Research Chair on Software Quality Assurance for Machine Learning Applications

Trustworthy Engineering of AI Software

1

mailto:foutse.khomh@polymtl.ca

Engineering Trustworthy AI systems
System evolution & continuous delivery

2

Reliable system

Data Health Model Health

Code Health

Time

Distribution shift

Data imbalance

Coding errors

Noisy labels

Under-specification

Bias

Vulnerabilities

Some Team Members

3

Engineering Trustworthy AI systems requires

Developing AI models and algorithms that are not only accurate, but
also :

Explainable,
Fair,
Privacy-preserving,
Causal, and
Robust.

4

Autonomous Driving Systems are expected to change mobility

5

• Improved road safety
• Increase Productivity
• Increased accessibility
• Reduce Costs?
• Reduce Congestion?

6

“By 2035, autonomous driving could create $300 billion to
$400 billion in revenue.”

7

AI is leading the way
for the launch of Level
4/5 autonomous
vehicles

9

A Typical Autonomous Driving Car today!

10

Neural Networks
are at the core of
their perception
system!

11

12

13https://www.nature.com/articles/s42256-022-00520-5

14

The Apollo Autonomous Driving System

15https://dl.acm.org/doi/pdf/10.1145/3368089.3417063

A single autonomous car will produce more data in a year than the roughly 320 million monthly
users of Twitter create (Kastrenakes, 2019; Matthews, 2018)

16

https://www.theverge.com/2019/2/7/18213567/twitter-to-stop-sharing-mau-as-users-decline-q4-2018-earnings
https://bigdatashowcase.com/how-much-big-data-companies-make-on-internet/

Architecture of an Autonomous Driving system

https://channgo2203.github.io/av_software/ 17

Ensuring the safety and auditability of ML-based
components is challenging

18

Eric Breck Shanqing Cai Eric Nielsen Michael Salib D. Sculley Proceedings of IEEE Big Data (2017)

Ensuring the auditability of ML-based components is
challenging because…

• Current state-of-the-art models are hard to interpret (i.e., black
box)

19

Input Output

Moreover, current popular explanation methods are unfortunately not
reliable!

20https://medium.com/@beenkim/beyond-interpretability-4bf03bbd9394

Neither can we fully trust current post-hoc XAI techniques

21

They often disagree!

ICSME’22

22

Even worse, current post-hoc XAI techniques …

…can be manipulated easily!

ICLR’23

ML models are vulnerable to carefully crafted perturbations (adversarial
robustness).

23https://portswigger.net/daily-swig/trojannet-a-simple-yet-effective-attack-on-machine-learning-models

24

Moreover, they hardly generalize out-of-distribution.

26

How can we provide safety guarantees that are
required to reach Level 4/5?

https://pubs.rsna.org/doi/10.1148/rg.305105013

Extensive testing!

Preliminary
preparation

Data
Collection

Data Preprocessing

Model
Implementation

Model
Training

Model
Evaluation

Model
Tuning

Data postprocessing

Model
Prediction

ML Development Phases

[4]Han et al., What do Programmers Discuss about Deep Learning Frameworks

[4]

27

Preliminary
preparation

ML Development Phases

[5] ELI STEVENS, LUCA ANTIGA, AND THOMAS VIEHMANN Deep Learning With Pytorch p286

Environment Preparation

CPU, GPU management
Resolve Frameworks/libraries versions

28

Preliminary
preparation

Data
Collection

ML Development Phases

[4]Han et al., What do Programmers Discuss about Deep Learning Frameworks

Load File from Disk Call REST API Using Data Collector Functionalities
Provided by DL Frameworks

29

Preliminary
preparation

Data
Collection

Data Preprocessing

ML Development Phases

[4]Han et al., What do Programmers Discuss about Deep Learning Frameworks

- Shape
- Size
- Format
- Data Type

30

Preliminary
preparation

Data
Collection

Data Preprocessing

Model
Implementation

ML Development Phases

[5] vikashraj luhaniwal., Analyzing different types of activation functions in neural networks — which one to prefer?

[5]

Activation Function Loss FunctionChoice of the architecture

(Hyper)parameters
 Learning rate
 Batch size

(Hyper)parameters Set Up

Optimizers
 Adam
 Momentum
 RMSProp

Model Optimizers

31

Preliminary
preparation

Data
Collection

Data Preprocessing

Model
Implementation

Model
Training

ML Development Phases

[6]Adarsh Menon., Neural Networks from Scratch in Python

[6]

32

Preliminary
preparation

Data
Collection

Data Preprocessing

Model
Implementation

Model
Training

Model
Evaluation

ML Development Phases

[4]Han et al., What do Programmers Discuss about Deep Learning Frameworks
33

Preliminary
preparation

Data
Collection

Data Preprocessing

Model
Implementation

Model
Training

Model
Evaluation

Model
Tuning

ML Development Phases

[7] David Morán, Hyperparameters Optimization

[7]

34

Preliminary
preparation

Data
Collection

Data Preprocessing

Model
Implementation

Model
Training

Model
Evaluation

Model
Tuning

Data postprocessing

ML Development Phases

[4]Han et al., What do Programmers Discuss about Deep Learning Frameworks
35

Preliminary
preparation

Data
Collection

Data Preprocessing

Model
Implementation

Model
Training

Model
Evaluation

Model
Tuning

Data postprocessing

Model
Prediction

ML Development Phases

[4]Han et al., What do Programmers Discuss about Deep Learning Frameworks

New data

Prediction

36

37

Multi-dimensional space of ML faults

M
od

el
 Is

su
es

not enough learning
capacity

non-optimal
regularization

correct

incorrect feature
extraction

incorrect gradient
computation

…

Implementation Issues

correct

…

Finding bugs in ML programs is hard

Common sentiment among practitioners

• 80-90% of time is spent debugging and tuning.

• 10-20% is spent on figuring the mathematics and implementing the
code for training.

38

Why is finding bugs in ML programs hard?

Most ML bugs are invisible

39

Labels out of order!

Full Stack Deep Learning, UC Berkeley, 2021

Why is finding bugs in ML programs hard?

40
Models can be very sensitive to small differences in hyperparameters!

He, Kaiming et al. “Delving Deep into Rectifiers: Surpassing Human-Level
Performance on ImageNet Classification.” 2015 IEEE International
Conference on Computer Vision (ICCV) (2015): 1026-1034.

Andrej Karpathy, CS231n course notes

Example of Bugs and Design Issues in a CNN

41

 is a bug:
◦ Incompatibility between softmax as output activation

and binary_crossentropy as loss function

 and  are design issues:
◦ Decreasing filters count: 224 > 55 > 13
◦ Decreasing filtering spatial size: (11, 11) > (5, 5) > (3, 3)
◦ Both represent poor structural choices
◦ Violating design patterns of effective and optimal CNN

architectures
◦ Leading to bad performance
◦ Low accuracy
◦ Long training time

42

TOSEM’21

NeuraLint : A linter for DL programs

 Capture defects early, so saves rework cost.

 Less expensive, because it doesn’t require
execution.

 Find defects in seconds.

 …

NeuraLint is fast and effective!

 It achieves an accuracy of 91.7 % .

 It correctly reported 18 additional bugs that were
not found by developers.

 The average execution time of NeuraLint for the
studied TensorFlow and Keras based programs are
2.892 and 3.197 seconds, respectively.

Try it out!

NeuraLint has two pillars

43

A meta-model of DL programs Taxonomy of common DL faults

Gunel Jahangirova, Nargiz Humbatova, Gabriele Bavota, Vincenzo Riccio, Andrea Stocco, and Paolo Tonella. 2019. Taxonomy of Real Faults in Deep
Learning Systems. arXiv preprint arXiv:1910.11015

44

“Generic?”

“unclear”

A fault in a DL
component?

Generic fault? “False positive”

Can be labelled?

Label the issue

Yes No

Yes No (DL fault)

Yes No

Identification of Common DL Faults

Frameworks

Sources

Artifact extraction

Open Coding

23 rules capturing common errors in DL programs (an excerpt)

45

• Reshaped Data Retention

→A reshape layer should preserve the number of data elements. We verify that the product of
original tensor dimensions equals to the product of reshaped tensor dimensions.

• Unnecessary Activation Removal

→Multiple and redundant connected activations are not allowed. Since all activation functions are
designed to transform real values into a restricted interval, successive activations produce
erroneous outputs.

• Zero Gradients Reset

→The gradients should be re-initialized after each training iteration. This clears old gradients from
the last step; otherwise accumulating the gradients hinders the optimization process. Some DL
libraries (e.g., Pytorch) delegates this necessary reset step to their users.

Graph transformations for ‘Unnecessary Activation Removal’

46Graph transformations are very efficient for finding violations of some conditions in a graph

HG, (LHS, RHS, NAC)
HG: Host graph
LHS: Precondition of the rule
RHS: postcondition of the rule
NAC: Negative Application Condition, i.e., the rule can be
applied only when NAC does not exist in the host graph

Application of the rule

(1) find a matching of LHS in HG,
(2) check NAC that forbid the presence of certain nodes and

edges,
(3) remove a part of HG that can be mapped to LHS but not to

RHS,
(4) a specific fault code is added to the node or edge in which

the violation occurred.

NeuraLint: Execution Flow

47

Graph transformation
Rules

Potential issues

Program

Original program

Model Extraction

Model

Run

List of detected Issues

48

NeuraLint: Model-based verification of DL programs

Evaluation of NeuraLint

49

18 Real-world DL programs
with reported bugs

 In total, 22 out of 24 bugs are detected correctly by NeuraLint (91.7 %). Moreover, NeuraLint correctly
reported 18 additional bugs that were not found by developers.

 The average execution time of NeuraLint for the studied TensorFlow and Keras based programs are 2.892 and
3.197 seconds respectively, it is therefore quite efficient!

TheDeepChecker outperforms AWS SMD

 DL coding bugs and misconfigurations are detected
with (precision, recall), respectively, equal to (90%,
96.4%) and (77%, 83.3%).

 Finds 30% more defects than AWS SageMaker.

50

TOSEM’22

TheDeepChecker : Dynamic testing of DL programs

 Capture defects during the training process.

 Less expensive than testing the resulting model.

 Some overhead on the training process.

…

Try it out!

51

TheDeepChecker verification rules
Parameters-related Issues Untrained Parameters

Poor Weight Initialization

Parameters’ Values Divergence

Parameters Unstable Learning

Activation-related Issues Activations out of Range

Neuron Saturation

Dead ReLU

Optimization-related Issues Unable to fit a small sample

Zero Loss

Diverging Loss

Slow or Non decreasing Loss

Loss Fluctuations

Unstable Gradient: Exploding

Unstable Gradient: Vanishing

Parameters-related Issues Untrained Parameters
Given a layer 𝑖𝑖 and 𝑁𝑁 iterations

𝑊𝑊𝑖𝑖
0 = 𝑊𝑊𝑖𝑖

1 ,𝑏𝑏𝑖𝑖0 = 𝑏𝑏𝑖𝑖1

𝑊𝑊𝑖𝑖
1 = 𝑊𝑊𝑖𝑖

2 ,𝑏𝑏𝑖𝑖1 = 𝑏𝑏𝑖𝑖2
…

𝑊𝑊𝑖𝑖
𝑁𝑁−1 = 𝑊𝑊𝑖𝑖

𝑁𝑁 ,𝑏𝑏𝑖𝑖𝑁𝑁−1 = 𝑏𝑏𝑖𝑖𝑁𝑁 Is
su

e

Poor Weight Initialization

Parameters’ Values Divergence

Given a layer 𝑖𝑖 and an iteration 𝑗𝑗

𝑊𝑊𝑖𝑖
𝑗𝑗 ≠ 𝑊𝑊𝑖𝑖

𝑗𝑗+1𝑏𝑏𝑖𝑖
𝑗𝑗 ≠ 𝑏𝑏𝑖𝑖

𝑗𝑗+1

∀ 𝑗𝑗 ∈ [0,𝑁𝑁 − 1]

Ve
rif

ic
at

io
n

Ro
ut

in
eParameters Unstable Learning

TheDeepChecker verification rules

52

53

Activation-related Issues Activations out of Range

Given a layer 𝑖𝑖

𝐴𝐴𝑖𝑖 ∉ [𝑚𝑚𝑚𝑚𝑚𝑚,𝑚𝑚𝑚𝑚𝑚𝑚] Is
su

e

Neuron Saturation

Given a layer 𝑖𝑖

𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝐴𝐴𝑖𝑖 ≤ 𝑚𝑚𝑚𝑚𝑚𝑚

Ve
rif

ic
at

io
n

Ro
ut

in
e

Dead ReLU

TheDeepChecker verification rules

54

Optimization-related Issues Unable to fit a small sample

The DNN could not properly
minimize the loss.

Is
su

eZero Loss

Diverging Loss

Slow or Non decreasing Loss

The DNN (with regularization off)
should overfit a tiny sample of data.

Given N iterations

𝑙𝑙𝑙𝑙𝑙𝑙𝑠𝑠𝑁𝑁 = 0

Ve
rif

ic
at

io
n

Ro
ut

in
eLoss Fluctuations

Unstable Gradient: Exploding

Unstable Gradient: Vanishing

TheDeepChecker verification rules

55

Program

Pre-processing

Post-processing

Verification
Routines

Potential issues

Program

Original program

Monitoring

Monitored Program

Run

Sanity Check of Program

TheDeepChecker: Execution Flow

TheDeepChecker vs Amazon SageMaker (SMD)

56

 DL coding bugs and misconfigurations are detected with (precision, recall), respectively, equal to (90%, 96.4%) and
(77%, 83.3%).

 TheDeepChecker outperforms SMD by detecting 75% rather than 60% of the total of reported bugs.

TheDeepChecker outperforms AWS SMD

 DL coding bugs and misconfigurations are detected
with (precision, recall), respectively, equal to (90%,
96.4%) and (77%, 83.3%).

 Finds 30% more defects than AWS SageMaker.

57

TOSEM’22

TheDeepChecker : Dynamic testing of DL programs

 Capture defects during the training process.

 Less expensive than testing the resulting model.

 Some overhead on the training process.

…

Try it out!

58

Automated Test
Input Generation

Test Adequacy
Evaluation

Pseudo Test
Oracle

Test Cases DNN Under Test

ICSME’19, TOSEM’23

59
Search-based Software Testing

Metaheuristic-based
Optimizer Fitness EvaluatorInitial

Data

DeepEvolution: Search-based Test Input Generation

Automated Test
Input Generation

Test Adequacy
Evaluation

Pseudo Test
Oracle

Test Cases DNN Under Test

60

Initial Test Data Seed Input Pool

Fitness Evaluation

Feasibility Checking

Population Population Update

TransformationRandom
Initialization Metadata

Sanity Checking Label Matching

Local Coverage

Global Coverage

Misclassified Inputs Difference-inducing Inputs

Failed Test Data

DNN

Generator

Transformer

Follow-up Tester

Coverage Analyzer

Undefined
Extensible

Provided

DeepEvolution: DL-based Software Testing Workflow

61

Affine Transformations

Pixel-value
Transformations

Tuning the interval domain of each transformation’s parameters,
e.g.
[th_R_min, th_R_max]  [tun_R_min, tun_R_max]

th_R_{min, max} : {min, max} theoretical rotation angle tun_R_{min, max} : {min, max} tuned rotation angle

Semantically-Preserving Metamorphic Image Transformation

Brightness

Contrast

Pixel Perturbation

Blurring

Translation

Scaling

Shearing

Rotation

62

Initial Test Data Seed Input Pool

Fitness Evaluation

Feasibility Checking

Population Population Update

TransformationRandom
Initialization Metadata

Sanity Checking Label Matching

Local Coverage

Global Coverage

Misclassified Inputs Difference-inducing Inputs

Failed Test Data

DNN

Generator

Transformer

Follow-up Tester

Coverage Analyzer

Undefined
Extensible

Provided

DeepEvolution: DL-based Software Testing Workflow

Affine Transformations

Pixel-value
Transformations 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜) > 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

SSIM : Structural Similarity Index Metric

Sanity Check:

They should be exclusively applied

Conservative Strategy:
+

+

Semantically-Preserving Metamorphic Image Transformation

Brightness

Contrast

Pixel Perturbation

Blurring

Translation

Scaling

Shearing

Rotation

64

Initial Test Data Seed Input Pool

Fitness Evaluation

Feasibility Checking

Population Population Update

TransformationRandom
Initialization Metadata

Sanity Checking Label Matching

Local Coverage

Global Coverage

Misclassified Inputs Difference-inducing Inputs

Failed Test Data

DNN

Generator

Transformer

Follow-up Tester

Coverage Analyzer

Undefined
Extensible

Provided

DeepEvolution: DL-based Software Testing Workflow

65

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑠𝑠1 = 𝛼𝛼1 × 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 + 𝛽𝛽1 × 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁
𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵 ∶ Novel Local Neuron Coverage
𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵 ∶ Novel Global Neuron Coverage
𝜶𝜶𝟏𝟏,𝜷𝜷1: Weights assigned to NLNC, NGNC

Original Input
(Ancestor)

activated

covered

new globally covered

new locally covered
Deactivated

Activated

Synthetic Input (Descendant)

Rectified Liner Unit(ReLU)

Threshold(pre-defined)

Neuron Coverage-based Fitness Function

66

Initial Test Data Seed Input Pool

Fitness Evaluation

Feasibility Checking

Population Population Update

TransformationRandom
Initialization Metadata

Sanity Checking Label Matching

Local Coverage

Global Coverage

Misclassified Inputs Difference-inducing Inputs

Failed Test Data

DNN

Generator

Transformer

Follow-up Tester

Coverage Analyzer

Undefined
Extensible

Provided

DeepEvolution: DL-based Software Testing Workflow

67

Parameters of pixel transformations Parameters of affine transformations

The vector encoding of the compound metamorphic transformation:

Constrained Multidimensional Space

Brightness Factor

Contrast Factor

Rotation Angle

𝑟𝑟otmax

bfmax

cfmax

Vectorization of our metamorphic image-based transformations

Brightness Factor Contrast Factor … Translation X Translation Y Rotation Angle …

68

Particle Swarm Opt. (PSO);
Cuckoo Search Algo. (CSA);
Bat Algo. (BAT);

Gray Wolf Opt. (GWO);

Moth Flame Opt.(MFO);
Whale Opt. Algo. (WOA);

Multi-Verse Opt. (MVO);
Firefly Algo. (FFA);

Salp Swarm Algo. (SSA)

Nature-Inspired Metaheuristic for exploring the transformations’ space

Evolution-Based metaheuristics: Genetic Algorithm(GA).

Swarm-Based metaheuristics: PSO, CSA,BAT, GWO, MFO, WOA, MVO, FFA, and SSA.

No Free Lunch Theorem

69

DeepEvolution outperformed TensorFuzz in finding defects
introduced during model quantization!

CIFAR-10 dataset :
- 32x32 color images
- 10 classes

MNIST dataset :
- 28x28 grayscale images
- 10 classes

× 1
× 2 × 1

× 2

𝑫𝑫𝟏𝟏 𝑫𝑫𝟐𝟐
𝑫𝑫𝟏𝟏 𝑫𝑫𝟐𝟐

70

Quantization

32-bit format Much smaller format

EMSE’22

71

DiverGet

Search-based
Software Testing

Framework

Dedicated to
Quantization
Assessment

Detecting
Difference-

Inducing Inputs

Behavioral
Disagreements
between DNN

versions

Class A Class B

72

Search Space
Design

Population
Initialization

Fitness
Assignment

Update

Generation of
New Population

Metamorphic
Relations (MRs)

Pre p a ra t ion Workflow

Stopping criteria == True

Stopping criteria == False

Motivation Proposed Solution Conclusion

MRs: Metamorphic Relation Formulation

73

MRs: Naturally-Occurring Radiometric Distortions

Original Image Spectral Band Loss Line Stripping Column Stripping Continuous Line
Dropout

Continuous Column
Dropout

Region Dropout Discontinuous Line
Dropout

Discontinuous Column
Dropout

Salt and Pepper
Noise

Proposed Solution Empirical Evaluation Conclusion

74

MRs: Naturally-Occurring Geometric Distortions

Original Image

120°

Zoom In RotationZoom Out

Motivation Proposed Solution Conclusion

75

Proposed Solution

77

Vectorization of our metamorphic image-based transformations

78

Fitness Function Design

Population
Initialization

Fitness
Assignment

Selection

Generation of
New Population

Stopping criteria == True

Stopping criteria == False

Divergence-based
Fitness Function

Coverage-based
Fitness Function

Fitness Function Design

Population
Initialization

Motivation

Divergence-based
Fitness Function

Coverage-based
Fitness Function

79

Evaluation of DiverGet

• RQ1: How effective is DiverGet’s main feature (i.e., the domain-specific

metamorphic relations and the search-based data transformation) at

finding difference-inducing inputs?

• RQ2: How does DiverGet compare to DiffChaser?

81

Evaluation Subjects

Quantization methodsDataset

Post Training Quantization
(PTQ)

Quantization Aware Training
(QAT)

Models

Pavia University
(PU)

Salinas
(SA)

Spectral-Spatial Residual
Network
(SSRN)

Hybrid Spectral
Neural Network

(HybridSN)

Metaheuristics

Particle Swarm
Optimization

(PSO)

Genetic Algorithm
(GA)

RQ1: The effectiveness of DiverGet as a novel
quantization assessment framework

Naturally-occurring synthetic inputs vs original test inputs:

DII: number of
Difference-
Inducing Inputs

Finding 1: the designed domain-specific metamorphic relations expose uncovered divergences caused by quantization
that original test data failed to highlight. 82

RQ1: The effectiveness of DiverGet as a novel
quantization assessment framework

Population-based metaheuristic algorithms vs Random Sampling

DiR: Divergence Rate
VR: Validation Rate

Finding 2: DiverGet’s searching strategy using population-based metaheuristic succeed in outperforming the Random
Sampling strategy into steering the generation into prominent regions. 83

84

RQ2: DiverGet vs. DiffChaser

DiverGet outperforms DiffChaser in terms of number of revealed
disagreements with a higher success rate!

85

Automated Quality Assurance
Tools are essential!

Adversarial weather conditions

86

Complex corner cases

87

88

Software in the loop testing!

Challenges:
• Vast search space
• Evaluating test scenarios is expensive
• The need for diverse test scenarios

Output traces of
system behavior

Test scenario
specification

We aim to generate
fault-revealing

scenarios!

Realistic simulator (CARLA, LGSVL, BeamNG)

89

Multi-objective search algorithm (NSGA-II) with 2 objectives:
• Maximize the difficulty of test scenarios, respecting the constraints
• Maximize the diversity of test scenarios

Selection
2

Crossover
3

Mutation
4

Select best
test scenarios

5
Initial test
scenarios

1

90

IST’21

Flexible representation, applicable to different test
problems

Element 1 Element 2 Element N

Element type Straight segment Curved segment Curved segment

Parameter 1 Segment length 10

Parameter 2 Turning angle 60 Turning angle 30

Lane keeping
system testing

Mobile robots
testing

91

Using a simplified model of the system to guide the
search

Front tire

Rear tire

Vehicle kinematic
bicycle model

Quite effective, achieving the 1st place in
SBST 2022 competition

Try it out!
92

Evolutionary
search

Trained RL agent

Random generator

TC1

…
Test
suite

Test cases (TC)
ε x Pop size

Initial
population

Using gradient based algorithms for smart initialization

TC2

TCN

93

TOSEM’23

Training the RL agent to generate challenging
scenarios with domain knowledge-based rewards

High reward

Low reward

• State: 2D array defining the test scenario
• Actions: new element to add to the scenario
• Reward: using simplified model to estimate

the reward
• PPO algorithm

Action 1

Action 2
Action 3

Action N

94

RIGAA outperforms MOEA with random initialization

Number of failures Diversity of failuresRL vs Random generator

Try it out!

95

96

	Engineering Trustworthy AI Systems�
	Engineering Trustworthy AI systems
	Some Team Members
	Engineering Trustworthy AI systems requires
	Autonomous Driving Systems are expected to change mobility
	Slide Number 6
	“By 2035, autonomous driving could create $300 billion to $400 billion in revenue.”
	Slide Number 9
	A Typical Autonomous Driving Car today!
	Neural Networks are at the core of their perception system!
	Slide Number 12
	Slide Number 13
	Slide Number 14
	The Apollo Autonomous Driving System
	Slide Number 16
	Architecture of an Autonomous Driving system
	Ensuring the safety and auditability of ML-based components is challenging
	Ensuring the auditability of ML-based components is challenging because…
	Slide Number 20
	Neither can we fully trust current post-hoc XAI techniques
	Slide Number 22
	Slide Number 23
	Slide Number 24
	How can we provide safety guarantees that are required to reach Level 4/5?
	ML Development Phases
	ML Development Phases
	ML Development Phases
	ML Development Phases
	ML Development Phases
	ML Development Phases
	ML Development Phases
	ML Development Phases
	ML Development Phases
	ML Development Phases
	Slide Number 37
	Finding bugs in ML programs is hard
	Why is finding bugs in ML programs hard?
	Why is finding bugs in ML programs hard?
	Example of Bugs and Design Issues in a CNN
	Slide Number 42
	NeuraLint has two pillars
	Slide Number 44
	23 rules capturing common errors in DL programs (an excerpt)
	Graph transformations for ‘Unnecessary Activation Removal’
	NeuraLint: Execution Flow
	NeuraLint: Model-based verification of DL programs
	Evaluation of NeuraLint
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	TheDeepChecker vs Amazon SageMaker (SMD) �
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Slide Number 65
	Slide Number 66
	Slide Number 67
	Slide Number 68
	Slide Number 69
	Slide Number 70
	Slide Number 71
	Slide Number 72
	Slide Number 73
	Slide Number 74
	Slide Number 75
	Slide Number 77
	Slide Number 78
	Slide Number 79
	Slide Number 80
	Slide Number 81
	Slide Number 82
	Slide Number 83
	Slide Number 84
	Slide Number 85
	Adversarial weather conditions
	Complex corner cases
	Software in the loop testing!
	Slide Number 89
	Slide Number 90
	Flexible representation, applicable to different test problems
	Using a simplified model of the system to guide the search
	Slide Number 93
	Training the RL agent to generate challenging scenarios with domain knowledge-based rewards
	RIGAA outperforms MOEA with random initialization
	Slide Number 96

