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Vision of Autonomic Computing

Computing systems that manage 
themselves in accordance with 
high-level objectives from humans.

• Self-configuring
• Self-healing
• Self-optimizing
• Self-protecting
• Self-{adapting, organizing, aware, *}

Kephart and Chess, IEEE 
Computing, January 2003.
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How to represent high-level objectives?

Utility functions map any possible 
state of a system to a scalar value

They can be obtained from
• Service Level Agreements
• Preference elicitation
• Simple templates

They are a useful representation for 
high-level objectives
• Value can be transformed and 

propagated among agents to guide 
system behavior at multiple levels

 
Kephart and Walsh, Policy 
2004
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How to manage to high-level 
objectives?
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Elicit utility function U(S) expressed in terms of 
service attributes S

Model how each attribute Si depends on controls C 
and observables O
• Models expressed as S(C; O)
• E.g., RT(routing weights, request rate)
• Models from experiments, learning, theory

Transform from service utility U to resource utility U’ 
by substitution
• U(S) = U(S(C; O)) = U’(C; O)

Optimize resource utility. As observable O changes, 
set C to values that maximize U’(C; O)
• C*(O) = argmaxC U’(C; O)
• U’*(O) = U’(C*(O); O)

U(RT, RPO)

Recovery 
Point 

ObjectiveResponse Time

U

Transform

l=0.01

cpu

Backup rate b

U’

U’(cpu, b; l)
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Finding the optimal control parameters
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U’(cpu, b; l)

U(RT, RPO)

RT

RPO

l=0.002

b

cpu

b*=0.875
cpu*=2.49
U*=152.7
RT*=99.58

l=0.01

b

cpu

b*=1.199
cpu*=3.65
U*=137.4
RT*=95.44

l=0.05

b

cpu

b*=2.053
cpu*=8.58
U*=75.9
RT*=88.69

Even if service-level utility remains 
fixed, resource-level utility 
depends upon environment.

Thus system responds to 
environmental changes. 
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Unity Data Center Prototype

U(#srv)

Server Server Server Server Server Server Server Server

U(#srv)
U(#srv)

Demand
(HTTP req/sec)

Trade3

App
Manager

U(RT) WebSphere 5.1
DB2 Batch

App
Manager

U(#srvrs)

Maximize 
Total SLA 
Revenue 5 secTrade3
Resource
Arbiter

Trade3

U(RT)

App
Manager

WebSphere 5.1
DB2

Demand
(HTTP req/sec)

Trade3

Chess, Segal, Whalley and White, Unity: 
Experiences with a Prototype Autonomic 
Computing System, ICAC 2004 
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How App Mgr computes its external resource utility

Trade3

App
Manager

U(RT) WebSphere 5.1
DB2

Resource
Arbiter

λ

U’’(srv)
M

ax
 U

til
ity

Number of servers

Elicit: U(RT)

Model: U(RT(C; srv, λ))

Transform: U’(C; srv, λ) = U(RT(C; srv, λ))

Optimize:

 C*(srv, λ) = argmaxCU’(C; srv, λ) 

 
 U’’(srv, λ) = U’(C*(srv, λ); srv, λ)

Optimal internal 
control settings

External resource-
level utility

Service-level utility 

ObservableMy controls Arbiter’s controls

Internal resource-
level utility 

Alternative to generating full 
curve: utility elicitation

Patrascu, Boutilier et al. 
New Approaches to 
Optimization and Utility 
Elicitation in Autonomic 
Computing, AAAI 2005 
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How Arbiter determines final resource allocation

Trade3

Server Server Server Server Server Server Server Server

Trade3

App
Manager

U(RT) WebSphere 5.1
DB2

App
Manager

WebSphere 5.1
DB2

U(RT)

Resource
Arbiter

U’1(srv1)
M

ax
 U

til
ity

Number of servers

U’2(srv2)

M
ax

 U
til

ity

Number of servers

Decision problem:
Allocate resources
    srv* = argmaxsrvSU’’i(srvi)
    Effectively maximizes SUi(Si)
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Athena

Athena, goddess of wisdom and strategy, 
emerging fully-formed from head of Zeus
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Utility function, the locus of wisdom and strategy, 
emerging fully-formed from head of modern sys admin

System AdminAthena

Athena, goddess of wisdom and strategy, 
emerging fully-formed from head of Zeus
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Utility function, the locus of wisdom and strategy, 
emerging fully-formed from head of modern sys admin

System AdminAthena

Athena, goddess of wisdom and strategy, 
emerging fully-formed from head of Zeus
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Reality Check: Humans as Decision Makers
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The Science of Irrationality

• Tversky and Kahneman [1974]
- well-informed and intelligent humans 

are subject to surprising cognitive 
biases and gaps in rationality that can 
lead to incorrect inferences and 
suboptimal decisions

• Ariely, Predictably Irrational [2008]

• Dozens of types of cognitive bias 
have been cataloged
• List of recognized cognitive biases

Tversky and Kahneman 
Science, 1974

Nobel Prize in Economics, 2002

https://en.wikipedia.org/wiki/List_of_cognitive_biases


Cognitive Bias example
(Experiment conducted on two groups of 100 MIT Sloan students)

Dan Ariely, 
Predictably 
Irrational (Harper 
Collins 2008)
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Cognitive Bias example
(Experiment conducted on two groups of 100 MIT Sloan students)

16

0

84

68

32

Dan Ariely, 
Predictably 
Irrational (Harper 
Collins 2008)

Decoy effect
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Noise (Kahneman et al. 2022)

• Human judgments are 
highly inconsistent 
across and within 
individuals

• Human decision makers 
are highly overconfident
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High-level objectives from humans, reconsidered

We aren’t very good at making decisions that optimize our objectives

Homo economicus
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High-level objectives from humans, reconsidered

We aren’t very good at making decisions that optimize our objectives

Homo economicus Homo not-so-sapiens
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High-level objectives from humans, reconsidered

We aren’t very good at expressing 
our objectives (utilities) in a 
mathematical form
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High-level objectives from humans, reconsidered

Often, we aren’t even sure what 
our objectives are

16

0

84

Greg Ganger (CMU) introduced 
notion of complaint-based tuning:

“Humans are not good at 
precisely specifying what they 
want, but they are very good at 
complaining when they are not 
satisfied.”

[Ganger & Strunk, AASMS 2003]
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High-level objectives from humans, reconsidered
IBM Research

4

How to represent high-level policies?

§ Utility functions map any possible 
state of a system to a scalar value

§ They can be obtained from
– Service Level Agreement
– preference elicitation
– simple templates

§ They are a very useful representation 
for high-level objectives

– Value can be transformed and propagated 
among agents to guide system behavior

Possible
State
s1

Possible
State
s2

Possible
State
s3

a1

a2

a3

Current
State
S

U(RT) =

Kephart and Walsh, Policy04If humans can’t explicitly 
specify their high-level 
objectives, is the vision of 
utility-based AC dead?
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High-level objectives from humans, reconsidered
IBM Research

4

How to represent high-level policies?

§ Utility functions map any possible 
state of a system to a scalar value

§ They can be obtained from
– Service Level Agreement
– preference elicitation
– simple templates

§ They are a very useful representation 
for high-level objectives

– Value can be transformed and propagated 
among agents to guide system behavior

Possible
State
s1

Possible
State
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Possible
State
s3

a1

a2

a3

Current
State
S

U(RT) =

Kephart and Walsh, Policy04

Embodied AINo.

But we must reconsider how 
humans and autonomic 
systems should interact…

If humans can’t explicitly 
specify their high-level 
objectives, is the vision of 
utility-based AC dead?
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Embodied AI

• Vision

• Anatomy

• Prototypes

• Research challenges
• Leveraging Large Language Models
• New non-verbal modalities
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• Human-human communication 
is multi-modal
- Speech
- Pointing
- Gesture
- Head orientation
- Eye contact
- Facial expression

To collaborate effectively with humans, AI agents need to communicate multi-modally

Embodied AI: Multi-modal AI Assistants

Image source: https://www.concentrix.com/blog/workplace-diversity-road-equality-long-good-start/
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Anatomy of an Embodied Agent
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Anatomy of an Embodied Agent

Sensors

Effectors

Intelligence
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Anatomy of an Embodied Agent

Agents
Agents

Actuators
Speakers, Displays, …

Intent 
Extractor

Context

space

app

personal

Models

World

People

Self

Planner/Ex
ecutor

Service 
Registry

Plan 
Registry

Functions, 
services, 
metadata

• Actions
• State changes 

AppAppApp

WatWatWat

Services

Sensors 
Kinects, 

cameras, 
microphones 

personal 
devices, …

Blackboard

Transcript 
Agent

Gesture 
Agent

Location/ 
Orientation 

Agent

Transcript

Raw 
Gestures

Location/orientation

Other 
Agents Other event/stream

• Transcript
• High-level 

gestures
• Emotions
• H-H 

Interactions
• ...

Analyzed/synthes
ized gestures, 
emotions, etc.

Higher-level 
perception / 

interpretation
Higher-level 
perceptual 
analysis

Multi-modal 
synthesis
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Embodied AI

• Vision

• Anatomy

• Prototypes

• Research challenges
• Leveraging Large Language Models
• New non-verbal modalities
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Multi-modal Assistant prototypes

RPI Cognitive Immersive Systems LabRPI Cognitive Immersive Systems Lab

Haggling Agents (NYT Photo 2020-10-23)

Kephart, Dibia et al., A cognitive assistant for 
visualizing and analyzing exoplanets. AAAI 2018.
Winner, Best Technical Demo Award.

Astrophysics

Farrell, Lenchner, Kephart 
et al. Symbiotic Cognitive 
Computing. AI Mag. 2016

M&A

Disaster Management

Unpublished, 2021

Kephart, Jeffrey O. "Multi-modal agents for business intelligence." Proceedings of the 20th 
International Conference on Autonomous Agents and MultiAgent Systems. 2021.

[video]
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Cognitive Virtual Operations Assistant
The cognitive VOA provides 
operators with a coherent and 
contextual view of multiple 
data sources
• Time series
• Alarm data
• DCS structure
• P&ID diagrams
• Manuals
• …

The VOA helps operators
• monitor system behavior
• discover correlations and trends
• diagnose and anticipate 

problems

Operators interact with the 
VOA through natural language 
(speech, text and pointing)

The prototype is being developed by IBM Research in 
collaboration with multiple industrial partners



Data 
Ingestion

VOA Data Flow and Architecture

OpenShift

Mongo
Redis

Cassandra
OpenSearch
JanusGraph

M2A2 custom M2A2 general

M2A2 generic 
services 

(plotting, tables, 
dashboard, etc.

LLM-
based 
NLU

Watson 
STT

Watson 
TTS

Watson 
Assistant

IBM Cloud

Plot PV for 
this tag in 
July 2023Client Data

WatsonX.ai

Client-specific 
servicesClient-specific 

services

M2A2 generic 
services 

(plotting, tables, 
dashboard, etc.

M2A2 generic 
services 

(plotting, tables, 
dashboard, etc.

SiWare

Thin client

SiWare 
Authoring

Live feeds for 
on-demand 

query

Periodic feeds

39



The multi-modal advantage
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Show incidents with date in 
the range February 1 2022 
to February 28 2022 
pertaining to LN2 for which 
AlarmType is TooHigh.

Text/speech only

Text: 122 characters

Speech: 11.8 sec

Cog. burden: Medium

Show incidents like this.

Text/speech + pointing + context

Text: 24 characters

Speech: 1.8 sec

Cog. burden: Low
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Embodied AI

• Vision

• Anatomy

• Prototypes

• Research challenges
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Research Challenge: Leveraging Large Language Models
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Leveraging Large 
Language Models

• ChatGPT 3.5: Self-supervised 
training on an Internet-scale 
corpus yields a model that does a 
very impressive job of answering 
general knowledge questions

• But it (and all LLMs) often  
”hallucinate” answers

• Industry applications require more 
refinements
• Fine-tuning
• Prompt engineering
• Retrieval-augmented generation
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LLM as Generator
Smart Retriever

Ask Question + generate

Relevant Prompt
Look-up

Question

VOA using LLMs with Retrieval-Augmented Generation

Prompt

Knowledge Graph Search Engine APIs

Guard-Railed Answer
(text, documents, 

plots, P&ID, tables)

Text

Plots, charts

Other graphics

Diagrams

Domain Specific 
Data Sources

SiWare
CreatesRaw Data

Non-Generative LLM Experiments indicate that we can 
accommodate multi-modal inputs 
(speech + pointing).
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Embodied AI

• Vision

• Anatomy

• Prototypes

• Research challenges
• Leveraging Large Language Models
• New non-verbal modalities
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• Human-human communication 
is multi-modal
✓ Speech
✓ Pointing
- Gesture
- Head orientation
- Eye contact
- Facial expression

Research Challenge: New non-verbal modalities

Image source: https://www.concentrix.com/blog/workplace-diversity-road-equality-long-good-start/

With Professor Qiang Ji and students Chenyi Kuang and Yufei Zhang of RPI 
(Rensselaer Polytechnic Institute), we are developing new non-verbal 
modalities that are particularly relevant for multi-human scenarios.
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3D reconstruction with 
uncertainty visualization

Research challenge
3D reconstruction of body pose from monocular camera

2D Image or Video
Distributions of body 

pose and shape

𝑝 𝜽 𝑿;𝑾  

𝑝 𝜷 𝑿;𝑾  

3D body mesh

We can use physics 
and bio-mechanical 
constraints to infer 
3D from 2D 

Physics Aware 
Temporal 
Modeling

𝝉

𝝀

Joint actuation and 
Ground reaction force

Zhang, Y., Wang, H., Kephart, J. O., & Ji, Q. (2023). Body Knowledge and Uncertainty Modeling 
for Monocular 3D Human Body Reconstruction. arXiv preprint arXiv:2308.00799.



3D Eye Gaze Estimation with eyeball modeling
Monocular camera

Real-world demonstrationWorkflow

Accuracy: ~5-10 degrees (more 
difficult with large head rotation)

48
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Dynamic 3D Face Reconstruction
Monocular camera
:

Original 2D video

We can accurately 
capture 3D 
movements of 
mouth, eyebrows 
and eyelids.

This can be 
leveraged to 
understand facial 
expressions and the 
underlying muscle 
contractions that 
produce them.3D Reconstruction 

mapped onto neutral face

Kuang, C., Cui, Z., Kephart, J. O., & Ji, Q. (2022, October). AU-Aware 3D Face Reconstruction 
through Personalized AU-Specific Blendshape Learning. In European Conference on Computer 
Vision (pp. 1-18). Cham: Springer Nature Switzerland.
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Embodied AI for System Administration (prototype)

• What-if analysis

• Simulation

• Decision 
assistance

[video]
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Imagine what additional existing capabilities could be integrated
Based on existing technology 

• Problem diagnosis
• Leverage knowledge of system logical and physical 

infrastructure
• Retrieve relevant instructions or manuals 
• Knowledge graph is key to interpreting human intent 

and executing appropriate responses

• What-if analyses and simulations

• Workload forecasts
• Proactive warnings
• Resource allocation and acquisition suggestions

• Risk-based decision making
• Elicit user risk preference
• Coupled with modeling and simulation
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Smart Swaps

l Domain-agnostic

l Guides decision-makers towards 
solutions that best match 
preferences

l Breaks a complex decision into a 
several smaller decisions
- Absolute dominance
- Probabilistic dominance
- Equal attributes
- Even swaps

l Uses Bayesian principles to infer 
utility function from user choices

Bhattacharjya and Kephart, Bayesian Interactive Decision Support for Multi-attribute Problems with Even Swaps, UAI 2014
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SmartSwaps: Absolute and Probable Dominance
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Learning from Probable Dominance

Beliefs about weights: wG ~ Uniform(0,1)

Gold Quality
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er
 Q
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lit

y

y

x > y

x < y

p x>y = 0.6

x
(0.8, 0.2)

(0.2, 0.6)

Original beliefs:

0 10.5 wG

p(wG)

0

1
x < y x > y

0 10.5 wG

p’(wG)

0

1
x < y x > y

0 10.5 wG

p’(wG)

0

1
x < y

•Suppose we ask 
user: Is x > y ?

•If Yes, then

•If No, then 
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Effect of Learning
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SmartSwaps learns the user’s utility function!
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Autonomic Computing problems for Embodied AI
l Embodied AI systems have stringent real-time requirements

§ High frame rate. Infer head orientation, gestures, faces, people locations, 
speech at ~60 frames/sec 

§ Low latency. To fuse multiple modalities properly, we need accurate 
timestamping and low latency (< 15-20 msec)

§ Fluctuating demand. Demand can be highly sporadic and situation-dependent
o Proportional to number of humans in the space
o Dependent on how frequently humans are changing position and orientation, more 

expensive face recognition can be interspersed with lower-cost tracking technologies.

§ LLMs consume vast GPU resources for training and inferencing

l Embodied AI systems require both edge and cloud computing, and the 
boundary may shift as demand or technology changes

l We need autonomic computing to embrace these challenges
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IBM Research

4

How to represent high-level policies?

§ Utility functions map any possible 
state of a system to a scalar value

§ They can be obtained from
– Service Level Agreement
– preference elicitation
– simple templates

§ They are a very useful representation 
for high-level objectives

– Value can be transformed and propagated 
among agents to guide system behavior

Possible
State
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Possible
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a3

Current
State
S

U(RT) =

Kephart and Walsh, Policy04

Recap

• Embodied Artificial Intelligence 

IBM Research

4

How to represent high-level policies?

§ Utility functions map any possible 
state of a system to a scalar value

§ They can be obtained from
– Service Level Agreement
– preference elicitation
– simple templates

§ They are a very useful representation 
for high-level objectives

– Value can be transformed and propagated 
among agents to guide system behavior
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Embodied AI

Embodied AI
Embodied AI

• AC for Embodied AI

• Embodied AI for AC

• A fatal flaw

• AC and Utility Functions
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Conclusions

IBM Research

4

How to represent high-level policies?

§ Utility functions map any possible 
state of a system to a scalar value

§ They can be obtained from
– Service Level Agreement
– preference elicitation
– simple templates

§ They are a very useful representation 
for high-level objectives

– Value can be transformed and propagated 
among agents to guide system behavior

Possible
State
s1

Possible
State
s2

Possible
State
s3

a1

a2

a3

Current
State
S

U(RT) =

Kephart and Walsh, Policy04

Desired goal state =

Embodied AI

+

A partnership between autonomic 
computing and embodied AI
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SmartSwaps evaluation

l Experimental setup
o M attributes
o N alternative choices
o Randomly generate 100 decision tables
o Randomly draw user’s true utility weights from (M-1)-

dimensional unit simplex
o Record average number of queries of each type over 

the set of 100

l Results
o Absolute dominance becomes less helpful/important 

as M grows
o Can reach decision for reasonable-sized problems 

with ~10 queries


